1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
|
# (C) British Crown Copyright 2011 - 2019, Met Office
#
# This file is part of cartopy.
#
# cartopy is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the
# Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# cartopy is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with cartopy. If not, see <https://www.gnu.org/licenses/>.
from __future__ import (absolute_import, division, print_function)
import numpy as np
import pytest
import shapely.geometry as sgeom
import shapely.wkt
import cartopy.crs as ccrs
class TestBoundary(object):
def test_no_polygon_boundary_reversal(self):
# Check that polygons preserve their clockwise or counter-clockwise
# ordering when they are attached to the boundary.
# Failure to do so will result in invalid polygons (their boundaries
# cross-over).
polygon = sgeom.Polygon([(-10, 30), (10, 60), (10, 50)])
projection = ccrs.Robinson(170.5)
multi_polygon = projection.project_geometry(polygon)
for polygon in multi_polygon:
assert polygon.is_valid
def test_polygon_boundary_attachment(self):
# Check the polygon is attached to the boundary even when no
# intermediate point for one of the crossing segments would normally
# exist.
polygon = sgeom.Polygon([(-10, 30), (10, 60), (10, 50)])
projection = ccrs.Robinson(170.6)
# This will raise an exception if the polygon/boundary intersection
# fails.
projection.project_geometry(polygon)
def test_out_of_bounds(self):
# Check that a polygon that is completely out of the map boundary
# doesn't produce an empty result.
projection = ccrs.TransverseMercator(central_longitude=0, approx=True)
polys = [
# All valid
([(86, -1), (86, 1), (88, 1), (88, -1)], 1),
# One out of backwards projection range
([(86, -1), (86, 1), (130, 1), (88, -1)], 1),
# An out of backwards projection range segment
([(86, -1), (86, 1), (130, 1), (130, -1)], 1),
# All out of backwards projection range
([(120, -1), (120, 1), (130, 1), (130, -1)], 0),
]
# Try all four combinations of valid/NaN vs valid/NaN.
for coords, expected_polys in polys:
polygon = sgeom.Polygon(coords)
multi_polygon = projection.project_geometry(polygon)
assert len(multi_polygon) == expected_polys
class TestMisc(object):
def test_misc(self):
projection = ccrs.TransverseMercator(central_longitude=-90,
approx=False)
polygon = sgeom.Polygon([(-10, 30), (10, 60), (10, 50)])
projection.project_geometry(polygon)
def test_small(self):
projection = ccrs.Mercator()
polygon = sgeom.Polygon([
(-179.7933201090486079, -16.0208822567412312),
(-180.0000000000000000, -16.0671326636424396),
(-179.9173693847652942, -16.5017831356493616),
])
multi_polygon = projection.project_geometry(polygon)
assert len(multi_polygon) == 1
assert len(multi_polygon[0].exterior.coords) == 4
def test_former_infloop_case(self):
# test a polygon which used to get stuck in an infinite loop
# see https://github.com/SciTools/cartopy/issues/60
coords = [(260.625, 68.90383337092122), (360.0, 79.8556091996901),
(360.0, 77.76848175458498), (0.0, 88.79068047337279),
(210.0, 90.0), (135.0, 88.79068047337279),
(260.625, 68.90383337092122)]
geom = sgeom.Polygon(coords)
target_projection = ccrs.PlateCarree()
source_crs = ccrs.Geodetic()
multi_polygon = target_projection.project_geometry(geom, source_crs)
# check the result is non-empty
assert not multi_polygon.is_empty
def test_project_previous_infinite_loop(self):
mstring1 = shapely.wkt.loads(
'MULTILINESTRING ('
'(-179.9999990464349651 -80.2000000000000171, '
'-179.5000000001111005 -80.2000000000000171, '
'-179.5000000001111005 -79.9000000000000199, '
'-179.9999995232739138 -79.9499999523163041, '
'-179.8000000001110550 -80.0000000000000000, '
'-179.8000000001110550 -80.0999999999999943, '
'-179.9999999047436177 -80.0999999999999943), '
'(179.9999995231628702 -79.9499999523163041, '
'179.5000000000000000 -79.9000000000000199, '
'179.5000000000000000 -80.0000000000000000, '
'179.9999995231628702 -80.0499999523162842, '
'179.5000000000000000 -80.0999999999999943, '
'179.5000000000000000 -80.2000000000000171, '
'179.9999990463256836 -80.2000000000000171))')
mstring2 = shapely.wkt.loads(
'MULTILINESTRING ('
'(179.9999996185302678 -79.9999999904632659, '
'179.5999999999999943 -79.9899999999999949, '
'179.5999999999999943 -79.9399999999999977, '
'179.9999996185302678 -79.9599999809265114), '
'(-179.9999999047436177 -79.9600000000000080, '
'-179.9000000001110777 -79.9600000000000080, '
'-179.9000000001110777 -80.0000000000000000, '
'-179.9999999047436177 -80.0000000000000000))')
multi_line_strings = [mstring1, mstring2]
src = ccrs.PlateCarree()
src._attach_lines_to_boundary(multi_line_strings, True)
@pytest.mark.parametrize('proj',
[ccrs.InterruptedGoodeHomolosine, ccrs.Mollweide])
def test_infinite_loop_bounds(self, proj):
# test a polygon which used to get stuck in an infinite loop but is now
# erroneously clipped.
# see https://github.com/SciTools/cartopy/issues/1131
# These names are for IGH; effectively the same for Mollweide.
bottom = [0., 70.]
right = [0., 90.]
top = [-180., 90.]
left = [-180., 70.]
verts = np.array([
bottom,
right,
top,
left,
bottom,
])
bad_path = sgeom.Polygon(verts)
target = proj()
source = ccrs.PlateCarree()
projected = target.project_geometry(bad_path, source)
# When transforming segments was broken, the resulting path did not
# close, and either filled most of the domain, or a smaller portion
# than it should. Check that the bounds match the individual points at
# the expected edges.
projected_left = target.transform_point(left[0], left[1], source)
assert projected.bounds[0] == pytest.approx(projected_left[0],
rel=target.threshold)
projected_bottom = target.transform_point(bottom[0], bottom[1], source)
assert projected.bounds[1] == pytest.approx(projected_bottom[1],
rel=target.threshold)
projected_right = target.transform_point(right[0], right[1], source)
assert projected.bounds[2] == pytest.approx(projected_right[0],
rel=target.threshold,
abs=1e-8)
projected_top = target.transform_point(top[0], top[1], source)
assert projected.bounds[3] == pytest.approx(projected_top[1],
rel=target.threshold)
def test_3pt_poly(self):
projection = ccrs.OSGB(approx=True)
polygon = sgeom.Polygon([(-1000, -1000),
(-1000, 200000),
(200000, -1000)])
multi_polygon = projection.project_geometry(polygon,
ccrs.OSGB(approx=True))
assert len(multi_polygon) == 1
assert len(multi_polygon[0].exterior.coords) == 4
def test_self_intersecting_1(self):
# Geometry comes from a matplotlib contourf (see #537)
wkt = ('POLYGON ((366.22000122 -9.71489298, '
'366.73212393 -9.679999349999999, '
'366.77412634 -8.767753000000001, '
'366.17762962 -9.679999349999999, '
'366.22000122 -9.71489298), '
'(366.22000122 -9.692636309999999, '
'366.32998657 -9.603356099999999, '
'366.74765799 -9.019999500000001, '
'366.5094086 -9.63175386, '
'366.22000122 -9.692636309999999))')
geom = shapely.wkt.loads(wkt)
source, target = ccrs.RotatedPole(198.0, 39.25), ccrs.EuroPP()
projected = target.project_geometry(geom, source)
# Before handling self intersecting interiors, the area would be
# approximately 13262233761329.
area = projected.area
assert 2.2e9 < area < 2.3e9, \
'Got area {}, expecting ~2.2e9'.format(area)
def test_self_intersecting_2(self):
# Geometry comes from a matplotlib contourf (see #509)
wkt = ('POLYGON ((343 20, 345 23, 342 25, 343 22, '
'340 25, 341 25, 340 25, 343 20), (343 21, '
'343 22, 344 23, 343 21))')
geom = shapely.wkt.loads(wkt)
source = target = ccrs.RotatedPole(193.0, 41.0)
projected = target.project_geometry(geom, source)
# Before handling self intersecting interiors, the area would be
# approximately 64808.
assert 7.9 < projected.area < 8.1
def test_tiny_point_between_boundary_points(self):
# Geometry comes from #259.
target = ccrs.Orthographic(0, -75)
source = ccrs.PlateCarree()
wkt = 'POLYGON ((132 -40, 133 -6, 125.3 1, 115 -6, 132 -40))'
geom = shapely.wkt.loads(wkt)
target = ccrs.Orthographic(central_latitude=90., central_longitude=0)
source = ccrs.PlateCarree()
projected = target.project_geometry(geom, source)
area = projected.area
# Before fixing, this geometry used to fill the whole disk. Approx
# 1.2e14.
assert 81330 < area < 81340, \
'Got area {}, expecting ~81336'.format(area)
def test_same_points_on_boundary_1(self):
source = ccrs.PlateCarree()
target = ccrs.PlateCarree(central_longitude=180)
geom = sgeom.Polygon([(-20, -20), (20, -20), (20, 20), (-20, 20)],
[[(-10, 0), (0, 20), (10, 0), (0, -20)]])
projected = target.project_geometry(geom, source)
assert abs(1200 - projected.area) < 1e-5
def test_same_points_on_boundary_2(self):
source = ccrs.PlateCarree()
target = ccrs.PlateCarree(central_longitude=180)
geom = sgeom.Polygon([(-20, -20), (20, -20), (20, 20), (-20, 20)],
[[(0, 0), (-10, 10), (0, 20), (10, 10)],
[(0, 0), (10, -10), (0, -20), (-10, -10)]])
projected = target.project_geometry(geom, source)
assert abs(1200 - projected.area) < 1e-5
class TestQuality(object):
def setup_class(self):
projection = ccrs.RotatedPole(pole_longitude=177.5,
pole_latitude=37.5)
polygon = sgeom.Polygon([
(177.5, -57.38460319),
(180.0, -57.445077),
(175.0, -57.19913331),
])
self.multi_polygon = projection.project_geometry(polygon)
# from cartopy.tests.mpl import show
# show(projection, self.multi_polygon)
def test_split(self):
# Start simple ... there should be two projected polygons.
assert len(self.multi_polygon) == 2
def test_repeats(self):
# Make sure we don't have repeated points at the boundary, because
# they mess up the linear extrapolation to the boundary.
# Make sure there aren't any repeated points.
xy = np.array(self.multi_polygon[0].exterior.coords)
same = (xy[1:] == xy[:-1]).all(axis=1)
assert not any(same), 'Repeated points in projected geometry.'
def test_symmetry(self):
# Make sure the number of points added on the way towards the
# boundary is similar to the number of points added on the way away
# from the boundary.
# Identify all the contiguous sets of non-boundary points.
xy = np.array(self.multi_polygon[0].exterior.coords)
boundary = np.logical_or(xy[:, 1] == 90, xy[:, 1] == -90)
regions = (boundary[1:] != boundary[:-1]).cumsum()
regions = np.insert(regions, 0, 0)
# For each region, check if the number of increasing steps is roughly
# equal to the number of decreasing steps.
for i in range(int(boundary[0]), regions.max(), 2):
indices = np.where(regions == i)
x = xy[indices, 0]
delta = np.diff(x)
num_incr = np.count_nonzero(delta > 0)
num_decr = np.count_nonzero(delta < 0)
assert abs(num_incr - num_decr) < 3, 'Too much asymmetry.'
class PolygonTests(object):
def _assert_bounds(self, bounds, x1, y1, x2, y2, delta=1):
assert abs(bounds[0] - x1) < delta
assert abs(bounds[1] - y1) < delta
assert abs(bounds[2] - x2) < delta
assert abs(bounds[3] - y2) < delta
class TestWrap(PolygonTests):
# Test that Plate Carree projection "does the right thing"(tm) with
# source data tha extends outside the [-180, 180] range.
def test_plate_carree_no_wrap(self):
proj = ccrs.PlateCarree()
poly = sgeom.box(0, 0, 10, 10)
multi_polygon = proj.project_geometry(poly, proj)
# Check the structure
assert len(multi_polygon) == 1
# Check the rough shape
polygon = multi_polygon[0]
self._assert_bounds(polygon.bounds, 0, 0, 10, 10)
def test_plate_carree_partial_wrap(self):
proj = ccrs.PlateCarree()
poly = sgeom.box(170, 0, 190, 10)
multi_polygon = proj.project_geometry(poly, proj)
# Check the structure
assert len(multi_polygon) == 2
# Check the rough shape
poly1, poly2 = multi_polygon
# The order of these polygons is not guaranteed, so figure out
# which is appropriate
if 170.0 not in poly1.bounds:
poly1, poly2 = poly2, poly1
self._assert_bounds(poly1.bounds, 170, 0, 180, 10)
self._assert_bounds(poly2.bounds, -180, 0, -170, 10)
def test_plate_carree_wrap(self):
proj = ccrs.PlateCarree()
poly = sgeom.box(200, 0, 220, 10)
multi_polygon = proj.project_geometry(poly, proj)
# Check the structure
assert len(multi_polygon) == 1
# Check the rough shape
polygon = multi_polygon[0]
self._assert_bounds(polygon.bounds, -160, 0, -140, 10)
def ring(minx, miny, maxx, maxy, ccw):
box = sgeom.box(minx, miny, maxx, maxy, ccw)
return np.array(box.exterior.coords)
class TestHoles(PolygonTests):
def test_simple(self):
proj = ccrs.PlateCarree()
poly = sgeom.Polygon(ring(-40, -40, 40, 40, True),
[ring(-20, -20, 20, 20, False)])
multi_polygon = proj.project_geometry(poly)
# Check the structure
assert len(multi_polygon) == 1
assert len(multi_polygon[0].interiors) == 1
# Check the rough shape
polygon = multi_polygon[0]
self._assert_bounds(polygon.bounds, -40, -47, 40, 47)
self._assert_bounds(polygon.interiors[0].bounds, -20, -21, 20, 21)
def test_wrapped_poly_simple_hole(self):
proj = ccrs.PlateCarree(-150)
poly = sgeom.Polygon(ring(-40, -40, 40, 40, True),
[ring(-20, -20, 20, 20, False)])
multi_polygon = proj.project_geometry(poly)
# Check the structure
assert len(multi_polygon) == 2
poly1, poly2 = multi_polygon
# The order of these polygons is not guaranteed, so figure out
# which is appropriate
if not len(poly1.interiors) == 1:
poly1, poly2 = poly2, poly1
assert len(poly1.interiors) == 1
assert len(poly2.interiors) == 0
# Check the rough shape
self._assert_bounds(poly1.bounds, 110, -47, 180, 47)
self._assert_bounds(poly1.interiors[0].bounds, 130, -21, 170, 21)
self._assert_bounds(poly2.bounds, -180, -43, -170, 43)
def test_wrapped_poly_wrapped_hole(self):
proj = ccrs.PlateCarree(-180)
poly = sgeom.Polygon(ring(-40, -40, 40, 40, True),
[ring(-20, -20, 20, 20, False)])
multi_polygon = proj.project_geometry(poly)
# Check the structure
assert len(multi_polygon) == 2
assert len(multi_polygon[0].interiors) == 0
assert len(multi_polygon[1].interiors) == 0
# Check the rough shape
polygon = multi_polygon[0]
self._assert_bounds(polygon.bounds, 140, -47, 180, 47)
polygon = multi_polygon[1]
self._assert_bounds(polygon.bounds, -180, -47, -140, 47)
def test_inverted_poly_simple_hole(self):
proj = ccrs.NorthPolarStereo()
poly = sgeom.Polygon([(0, 0), (-90, 0), (-180, 0), (-270, 0)],
[[(0, -30), (90, -30), (180, -30), (270, -30)]])
multi_polygon = proj.project_geometry(poly)
# Check the structure
assert len(multi_polygon) == 1
assert len(multi_polygon[0].interiors) == 1
# Check the rough shape
polygon = multi_polygon[0]
self._assert_bounds(polygon.bounds, -2.4e7, -2.4e7, 2.4e7, 2.4e7, 1e6)
self._assert_bounds(polygon.interiors[0].bounds,
- 1.2e7, -1.2e7, 1.2e7, 1.2e7, 1e6)
def test_inverted_poly_clipped_hole(self):
proj = ccrs.NorthPolarStereo()
poly = sgeom.Polygon([(0, 0), (-90, 0), (-180, 0), (-270, 0)],
[[(-135, -60), (-45, -60),
(45, -60), (135, -60)]])
multi_polygon = proj.project_geometry(poly)
# Check the structure
assert len(multi_polygon) == 1
assert len(multi_polygon[0].interiors) == 1
# Check the rough shape
polygon = multi_polygon[0]
self._assert_bounds(polygon.bounds, -5.0e7, -5.0e7, 5.0e7, 5.0e7, 1e6)
self._assert_bounds(polygon.interiors[0].bounds,
- 1.2e7, -1.2e7, 1.2e7, 1.2e7, 1e6)
assert abs(polygon.area - 7.30e15) < 1e13
def test_inverted_poly_removed_hole(self):
proj = ccrs.NorthPolarStereo(globe=ccrs.Globe(ellipse='WGS84'))
poly = sgeom.Polygon([(0, 0), (-90, 0), (-180, 0), (-270, 0)],
[[(-135, -75), (-45, -75),
(45, -75), (135, -75)]])
multi_polygon = proj.project_geometry(poly)
# Check the structure
assert len(multi_polygon) == 1
assert len(multi_polygon[0].interiors) == 1
# Check the rough shape
polygon = multi_polygon[0]
self._assert_bounds(polygon.bounds, -5.0e7, -5.0e7, 5.0e7, 5.0e7, 1e6)
self._assert_bounds(polygon.interiors[0].bounds,
- 1.2e7, -1.2e7, 1.2e7, 1.2e7, 1e6)
assert abs(polygon.area - 7.34e15) < 1e13
def test_multiple_interiors(self):
exterior = ring(0, 0, 12, 12, True)
interiors = [ring(1, 1, 2, 2, False), ring(1, 8, 2, 9, False)]
poly = sgeom.Polygon(exterior, interiors)
target = ccrs.PlateCarree()
source = ccrs.Geodetic()
assert len(list(target.project_geometry(poly, source))) == 1
|