File: contour_transforms.py

package info (click to toggle)
python-cartopy 0.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,668 kB
  • sloc: python: 15,101; makefile: 166; javascript: 66; sh: 6
file content (68 lines) | stat: -rw-r--r-- 2,246 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
"""
Contour transform options
=========================

This example demonstrates the difference between transforming
the points before/after generating the contours. It uses the
**transform_first** keyword argument to indicate that Cartopy should
transform the points before calling the contouring algorithm,
which can have a significant impact on speed (it is much faster
to transform points than it is to transform patches). This does
have a negative impact on the wrapped coordinates as one can see in the
second axes that the data does not extend to the full global extent.
"""
import cartopy.crs as ccrs
import matplotlib.pyplot as plt


def sample_data(shape=(73, 145)):
    """Return ``lons``, ``lats`` and ``data`` of some fake data."""
    import numpy as np

    nlats, nlons = shape
    lats = np.linspace(-np.pi / 2, np.pi / 2, nlats)
    lons = np.linspace(0, 2 * np.pi, nlons)
    lons, lats = np.meshgrid(lons, lats)
    wave = 0.75 * (np.sin(2 * lats) ** 8) * np.cos(4 * lons)
    mean = 0.5 * np.cos(2 * lats) * ((np.sin(2 * lats)) ** 2 + 2)

    lats = np.rad2deg(lats)
    lons = np.rad2deg(lons)
    data = wave + mean

    return lons, lats, data


def main():

    # Use the same sample data as the waves example, but make it
    # more dependent on y for more interesting contours.
    x, y, z = sample_data((20, 40))
    z = z * -1.5 * y

    # Setup a global EckertIII map with faint coastlines.
    fig = plt.figure()
    ax1 = fig.add_subplot(2, 1, 1, projection=ccrs.EckertIII())
    ax1.set_title("transform_first=False")
    ax2 = fig.add_subplot(2, 1, 2, projection=ccrs.EckertIII())
    ax2.set_title("transform_first=True")

    for ax, transform_first in zip([ax1, ax2], [False, True]):
        ax.set_global()
        ax.coastlines('110m', alpha=0.1)

        # Add colourful filled contours.
        filled_c = ax.contourf(x, y, z, transform=ccrs.PlateCarree(),
                               transform_first=transform_first)

        # And black line contours.
        ax.contour(x, y, z, levels=filled_c.levels,
                   colors=['black'],
                   transform=ccrs.PlateCarree(),
                   transform_first=transform_first)

    plt.show()


if __name__ == '__main__':
    main()