File: geodesic.py

package info (click to toggle)
python-cartopy 0.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,668 kB
  • sloc: python: 15,101; makefile: 166; javascript: 66; sh: 6
file content (234 lines) | stat: -rw-r--r-- 8,061 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Copyright Cartopy Contributors
#
# This file is part of Cartopy and is released under the LGPL license.
# See COPYING and COPYING.LESSER in the root of the repository for full
# licensing details.
#
# cython: embedsignature=True

"""
This module defines the Geodesic class which can interface with the Proj
geodesic functions.

"""
import numpy as np
import pyproj
import shapely.geometry as sgeom


class Geodesic:
    """
    Define an ellipsoid on which to solve geodesic problems.

    """

    def __init__(self, radius=6378137.0, flattening=1 / 298.257223563):
        """
        Parameters
        ----------
        radius: float, optional
            Equatorial radius (metres). Defaults to the WGS84 semimajor axis
            (6378137.0 metres).

        flattening: float, optional
            Flattening of ellipsoid.  Setting flattening = 0 gives a sphere.
            Negative flattening gives a prolate ellipsoid. If flattening > 1,
            set flattening to 1/flattening.
            Defaults to the WGS84 flattening (1/298.257223563).

        """
        if flattening > 1:
            flattening = 1 / flattening
        self.geod = pyproj.Geod(a=radius, f=flattening)
        self.radius = radius
        self.flattening = flattening

    def __str__(self):
        return (f'<Geodesic: radius={self.radius:0.3f}, '
                f'flattening=1/{1/self.flattening:0.3f}>')

    def direct(self, points, azimuths, distances):
        """
        Solve the direct geodesic problem where the length of the geodesic is
        specified in terms of distance.

        Can accept and broadcast length 1 arguments. For example, given a
        single start point and distance, an array of different azimuths can be
        supplied to locate multiple endpoints.

        Parameters
        ----------
        points: array_like, shape=(n *or* 1, 2)
            The starting longitude-latitude point(s) from which to travel.

        azimuths: float or array_like with shape=(n, )
            List of azimuth values (degrees).

        distances : float or array_like with shape(n, )
            List of distances values (metres).

        Returns
        -------
        `numpy.ndarray`, shape=(n, 3)
            The longitudes, latitudes, and forward azimuths of the located
            endpoint(s).

        """

        # Create numpy arrays from inputs, and ensure correct shape. Note:
        # reshape(-1) returns a 1D array from a 0 dimensional array as required
        # for broadcasting.
        pts = np.array(points, dtype=np.float64).reshape((-1, 2))
        azims = np.array(azimuths, dtype=np.float64).reshape(-1)
        dists = np.array(distances, dtype=np.float64).reshape(-1)

        sizes = [pts.shape[0], azims.size, dists.size]
        n_points = max(sizes)
        if not all(size in [1, n_points] for size in sizes):
            raise ValueError("Inputs must have common length n or length one.")

        # Broadcast any length 1 arrays to the correct size.
        if pts.shape[0] == 1:
            orig_pts = pts
            pts = np.empty([n_points, 2], dtype=np.float64)
            pts[:, :] = orig_pts

        if azims.size == 1:
            azims = np.repeat(azims, n_points)

        if dists.size == 1:
            dists = np.repeat(dists, n_points)

        lons, lats, azims = self.geod.fwd(pts[:, 0], pts[:, 1], azims, dists)
        # Convert back azimuth to forward azimuth.
        azims += np.where(azims > 0, -180, 180)
        return np.column_stack([lons, lats, azims])

    def inverse(self, points, endpoints):
        """
        Solve the inverse geodesic problem.

        Can accept and broadcast length 1 arguments. For example, given a
        single start point, an array of different endpoints can be supplied to
        find multiple distances.

        Parameters
        ----------
        points: array_like, shape=(n *or* 1, 2)
            The starting longitude-latitude point(s) from which to travel.

        endpoints: array_like, shape=(n *or* 1, 2)
            The longitude-latitude point(s) to travel to.

        Returns
        -------
        `numpy.ndarray`, shape=(n, 3)
            The distances, and the (forward) azimuths of the start and end
            points.

        """

        # Create numpy arrays from inputs, and ensure correct shape.
        points = np.array(points, dtype=np.float64)
        endpoints = np.array(endpoints, dtype=np.float64)

        if points.ndim > 2 or (points.ndim == 2 and points.shape[1] != 2):
            raise ValueError(
                f'Expecting input points to be (N, 2), got {points.shape}')

        pts = points.reshape((-1, 2))
        epts = endpoints.reshape((-1, 2))

        sizes = [pts.shape[0], epts.shape[0]]
        n_points = max(sizes)
        if not all(size in [1, n_points] for size in sizes):
            raise ValueError("Inputs must have common length n or length one.")

        # Broadcast any length 1 arrays to the correct size.
        if pts.shape[0] == 1:
            orig_pts = pts
            pts = np.empty([n_points, 2], dtype=np.float64)
            pts[:, :] = orig_pts

        if epts.shape[0] == 1:
            orig_pts = epts
            epts = np.empty([n_points, 2], dtype=np.float64)
            epts[:, :] = orig_pts

        start_azims, end_azims, dists = self.geod.inv(pts[:, 0], pts[:, 1],
                                                      epts[:, 0], epts[:, 1])
        # Convert back azimuth to forward azimuth.
        end_azims += np.where(end_azims > 0, -180, 180)
        return np.column_stack([dists, start_azims, end_azims])

    def circle(self, lon, lat, radius, n_samples=180, endpoint=False):
        """
        Find a geodesic circle of given radius at a given point.

        Parameters
        ----------
        lon : float
            Longitude coordinate of the centre.
        lat : float
            Latitude coordinate of the centre.
        radius : float
            The radius of the circle (metres).
        n_samples: int, optional
            Integer number of sample points of circle.
        endpoint: bool, optional
            Whether to repeat endpoint at the end of returned array.

        Returns
        -------
        `numpy.ndarray`, shape=(n_samples, 2)
            The evenly spaced longitude-latitude points on the circle.

        """

        # Put the input arguments into c-typed values.
        center = np.array([lon, lat]).reshape((1, 2))
        radius_m = np.asarray(radius).reshape(1)

        azimuths = np.linspace(360., 0., n_samples,
                               endpoint=endpoint).astype(np.double)

        return self.direct(center, azimuths, radius_m)[:, 0:2]

    def geometry_length(self, geometry):
        """
        Return the distance (in physical meters) of the given Shapely geometry.

        The geometry is assumed to be in spherical (lon, lat) coordinates.

        Parameters
        ----------
        geometry : `shapely.geometry.BaseGeometry`
            The Shapely geometry to compute the length of. For polygons, the
            exterior length will be calculated. For multi-part geometries, the
            sum of the parts will be computed.

        """
        result = None
        if hasattr(geometry, 'geoms'):
            # Multi-geometry.
            result = sum(self.geometry_length(geom) for geom in geometry.geoms)

        elif hasattr(geometry, 'exterior'):
            # Polygon.
            result = self.geometry_length(geometry.exterior)

        elif (hasattr(geometry, 'coords') and
                not isinstance(geometry, sgeom.Point)):
            coords = np.array(geometry.coords)
            result = self.geometry_length(coords)

        elif isinstance(geometry, np.ndarray):
            coords = geometry
            distances, _, _ = np.array(
                self.inverse(coords[:-1, :], coords[1:, :]).T)
            result = distances.sum()

        else:
            raise TypeError(f'Unhandled type {geometry.__class__}')

        return result