1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
|
# Copyright Cartopy Contributors
#
# This file is part of Cartopy and is released under the LGPL license.
# See COPYING and COPYING.LESSER in the root of the repository for full
# licensing details.
import re
import numpy as np
import matplotlib.pyplot as plt
import pytest
import cartopy.crs as ccrs
from cartopy.tests.mpl import MPL_VERSION
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='global_contour_wrap.png',
style='mpl20', tolerance=2.25)
def test_global_contour_wrap_new_transform():
ax = plt.axes(projection=ccrs.PlateCarree())
ax.coastlines()
x, y = np.meshgrid(np.linspace(0, 360), np.linspace(-90, 90))
data = np.sin(np.sqrt(x ** 2 + y ** 2))
ax.contour(x, y, data, transform=ccrs.PlateCarree())
return ax.figure
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='global_contour_wrap.png',
style='mpl20', tolerance=2.25)
def test_global_contour_wrap_no_transform():
ax = plt.axes(projection=ccrs.PlateCarree())
ax.coastlines()
x, y = np.meshgrid(np.linspace(0, 360), np.linspace(-90, 90))
data = np.sin(np.sqrt(x ** 2 + y ** 2))
ax.contour(x, y, data)
return ax.figure
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='global_contourf_wrap.png')
def test_global_contourf_wrap_new_transform():
ax = plt.axes(projection=ccrs.PlateCarree())
ax.coastlines()
x, y = np.meshgrid(np.linspace(0, 360), np.linspace(-90, 90))
data = np.sin(np.sqrt(x ** 2 + y ** 2))
ax.contourf(x, y, data, transform=ccrs.PlateCarree())
return ax.figure
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='global_contourf_wrap.png')
def test_global_contourf_wrap_no_transform():
ax = plt.axes(projection=ccrs.PlateCarree())
ax.coastlines()
x, y = np.meshgrid(np.linspace(0, 360), np.linspace(-90, 90))
data = np.sin(np.sqrt(x ** 2 + y ** 2))
ax.contourf(x, y, data)
return ax.figure
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='global_pcolor_wrap.png')
def test_global_pcolor_wrap_new_transform():
ax = plt.axes(projection=ccrs.PlateCarree())
ax.coastlines()
x, y = np.meshgrid(np.linspace(0, 360), np.linspace(-90, 90))
data = np.sin(np.sqrt(x ** 2 + y ** 2))[:-1, :-1]
ax.pcolor(x, y, data, transform=ccrs.PlateCarree())
return ax.figure
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='global_pcolor_wrap.png')
def test_global_pcolor_wrap_no_transform():
ax = plt.axes(projection=ccrs.PlateCarree())
ax.coastlines()
x, y = np.meshgrid(np.linspace(0, 360), np.linspace(-90, 90))
data = np.sin(np.sqrt(x ** 2 + y ** 2))[:-1, :-1]
ax.pcolor(x, y, data)
return ax.figure
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='global_scatter_wrap.png')
def test_global_scatter_wrap_new_transform():
ax = plt.axes(projection=ccrs.PlateCarree())
# By default the coastline feature will be drawn after patches.
# By setting zorder we can ensure our scatter points are drawn
# after the coastlines.
ax.coastlines(zorder=0)
x, y = np.meshgrid(np.linspace(0, 360), np.linspace(-90, 90))
data = np.sin(np.sqrt(x ** 2 + y ** 2))
ax.scatter(x, y, c=data, transform=ccrs.PlateCarree())
return ax.figure
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='global_scatter_wrap.png')
def test_global_scatter_wrap_no_transform():
ax = plt.axes(projection=ccrs.PlateCarree())
ax.coastlines(zorder=0)
x, y = np.meshgrid(np.linspace(0, 360), np.linspace(-90, 90))
data = np.sin(np.sqrt(x ** 2 + y ** 2))
ax.scatter(x, y, c=data)
return ax.figure
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='global_hexbin_wrap.png')
def test_global_hexbin_wrap():
ax = plt.axes(projection=ccrs.PlateCarree())
ax.coastlines(zorder=2)
x, y = np.meshgrid(np.arange(-179, 181), np.arange(-90, 91))
data = np.sin(np.sqrt(x**2 + y**2))
ax.hexbin(
x.flatten(),
y.flatten(),
C=data.flatten(),
gridsize=20,
zorder=1,
)
return ax.figure
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(
filename='global_hexbin_wrap.png',
tolerance=0.5)
def test_global_hexbin_wrap_transform():
ax = plt.axes(projection=ccrs.PlateCarree())
ax.coastlines(zorder=2)
x, y = np.meshgrid(np.arange(0, 360), np.arange(-90, 91))
# wrap values so to match x values from test_global_hexbin_wrap
x_wrap = np.where(x >= 180, x - 360, x)
data = np.sin(np.sqrt(x_wrap**2 + y**2))
ax.hexbin(
x.flatten(),
y.flatten(),
C=data.flatten(),
gridsize=20,
zorder=1,
)
return ax.figure
@pytest.mark.filterwarnings("ignore:Unable to determine extent")
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='simple_global.png')
def test_simple_global():
ax = plt.axes(projection=ccrs.PlateCarree())
ax.coastlines()
# produces a global map, despite not having needed to set the limits
return ax.figure
@pytest.mark.filterwarnings("ignore:Unable to determine extent")
@pytest.mark.natural_earth
@pytest.mark.parametrize('proj', [
ccrs.EckertI,
ccrs.EckertII,
ccrs.EckertIII,
ccrs.EckertIV,
ccrs.EckertV,
ccrs.EckertVI,
ccrs.EqualEarth,
ccrs.Gnomonic,
pytest.param((ccrs.InterruptedGoodeHomolosine, dict(emphasis='land')),
id='InterruptedGoodeHomolosine'),
ccrs.LambertCylindrical,
pytest.param((ccrs.Mercator, dict(min_latitude=-85, max_latitude=85)),
id='Mercator'),
ccrs.Miller,
ccrs.Mollweide,
ccrs.NorthPolarStereo,
ccrs.Orthographic,
pytest.param((ccrs.OSGB, dict(approx=True)), id='OSGB'),
ccrs.PlateCarree,
ccrs.Robinson,
pytest.param((ccrs.RotatedPole,
dict(pole_latitude=45, pole_longitude=180)),
id='RotatedPole'),
ccrs.Stereographic,
ccrs.SouthPolarStereo,
pytest.param((ccrs.TransverseMercator, dict(approx=True)),
id='TransverseMercator'),
])
@pytest.mark.mpl_image_compare(
tolerance=0.97 if MPL_VERSION.release[:2] < (3, 5) else 0.5,
style='mpl20')
def test_global_map(proj):
if isinstance(proj, tuple):
proj, kwargs = proj
else:
kwargs = {}
proj = proj(**kwargs)
fig = plt.figure(figsize=(2, 2))
ax = fig.add_subplot(projection=proj)
ax.set_global()
ax.coastlines(resolution="110m")
ax.plot(-0.08, 51.53, 'o', transform=ccrs.PlateCarree())
ax.plot([-0.08, 132], [51.53, 43.17], color='red',
transform=ccrs.PlateCarree())
ax.plot([-0.08, 132], [51.53, 43.17], color='blue',
transform=ccrs.Geodetic())
return fig
def test_cursor_values():
ax = plt.axes(projection=ccrs.NorthPolarStereo())
x, y = np.array([-969100., -4457000.])
r = ax.format_coord(x, y)
assert (r.encode('ascii', 'ignore') ==
b'-9.691e+05, -4.457e+06 (50.716617N, 12.267069W)')
ax = plt.axes(projection=ccrs.PlateCarree())
x, y = np.array([-181.5, 50.])
r = ax.format_coord(x, y)
assert (r.encode('ascii', 'ignore') ==
b'-181.5, 50 (50.000000N, 178.500000E)')
ax = plt.axes(projection=ccrs.Robinson())
x, y = np.array([16060595.2, 2363093.4])
r = ax.format_coord(x, y)
assert re.search(b'1.606e\\+07, 2.363e\\+06 '
b'\\(22.09[0-9]{4}N, 173.70[0-9]{4}E\\)',
r.encode('ascii', 'ignore'))
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='pcolormesh_global_wrap1.png',
tolerance=1.27)
def test_pcolormesh_global_with_wrap1():
# make up some realistic data with bounds (such as data from the UM)
nx, ny = 36, 18
xbnds = np.linspace(0, 360, nx, endpoint=True)
ybnds = np.linspace(-90, 90, ny, endpoint=True)
x, y = np.meshgrid(xbnds, ybnds)
data = np.exp(np.sin(np.deg2rad(x)) + np.cos(np.deg2rad(y)))
data = data[:-1, :-1]
fig = plt.figure()
ax = fig.add_subplot(2, 1, 1, projection=ccrs.PlateCarree())
ax.pcolormesh(xbnds, ybnds, data, transform=ccrs.PlateCarree(), snap=False)
ax.coastlines()
ax.set_global() # make sure everything is visible
ax = fig.add_subplot(2, 1, 2, projection=ccrs.PlateCarree(180))
ax.pcolormesh(xbnds, ybnds, data, transform=ccrs.PlateCarree(), snap=False)
ax.coastlines()
ax.set_global() # make sure everything is visible
return fig
def test_pcolormesh_get_array_with_mask():
# make up some realistic data with bounds (such as data from the UM)
nx, ny = 36, 18
xbnds = np.linspace(0, 360, nx, endpoint=True)
ybnds = np.linspace(-90, 90, ny, endpoint=True)
x, y = np.meshgrid(xbnds, ybnds)
data = np.exp(np.sin(np.deg2rad(x)) + np.cos(np.deg2rad(y)))
data = data[:-1, :-1]
fig = plt.figure()
ax = fig.add_subplot(2, 1, 1, projection=ccrs.PlateCarree())
c = ax.pcolormesh(xbnds, ybnds, data, transform=ccrs.PlateCarree())
assert c._wrapped_collection_fix is not None, \
'No pcolormesh wrapping was done when it should have been.'
assert np.array_equal(data.ravel(), c.get_array()), \
'Data supplied does not match data retrieved in wrapped case'
ax.coastlines()
ax.set_global() # make sure everything is visible
# Case without wrapping
nx, ny = 36, 18
xbnds = np.linspace(-60, 60, nx, endpoint=True)
ybnds = np.linspace(-80, 80, ny, endpoint=True)
x, y = np.meshgrid(xbnds, ybnds)
data = np.exp(np.sin(np.deg2rad(x)) + np.cos(np.deg2rad(y)))
data2 = data[:-1, :-1]
ax = fig.add_subplot(2, 1, 2, projection=ccrs.PlateCarree())
c = ax.pcolormesh(xbnds, ybnds, data2, transform=ccrs.PlateCarree())
ax.coastlines()
ax.set_global() # make sure everything is visible
assert getattr(c, "_wrapped_collection_fix", None) is None, \
'pcolormesh wrapping was done when it should not have been.'
assert np.array_equal(data2.ravel(), c.get_array()), \
'Data supplied does not match data retrieved in unwrapped case'
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='pcolormesh_global_wrap2.png',
tolerance=1.87)
def test_pcolormesh_global_with_wrap2():
# make up some realistic data with bounds (such as data from the UM)
nx, ny = 36, 18
xbnds, xstep = np.linspace(0, 360, nx - 1, retstep=True, endpoint=True)
ybnds, ystep = np.linspace(-90, 90, ny - 1, retstep=True, endpoint=True)
xbnds -= xstep / 2
ybnds -= ystep / 2
xbnds = np.append(xbnds, xbnds[-1] + xstep)
ybnds = np.append(ybnds, ybnds[-1] + ystep)
x, y = np.meshgrid(xbnds, ybnds)
data = np.exp(np.sin(np.deg2rad(x)) + np.cos(np.deg2rad(y)))
data = data[:-1, :-1]
fig = plt.figure()
ax = fig.add_subplot(2, 1, 1, projection=ccrs.PlateCarree())
ax.pcolormesh(xbnds, ybnds, data, transform=ccrs.PlateCarree(), snap=False)
ax.coastlines()
ax.set_global() # make sure everything is visible
ax = fig.add_subplot(2, 1, 2, projection=ccrs.PlateCarree(180))
ax.pcolormesh(xbnds, ybnds, data, transform=ccrs.PlateCarree(), snap=False)
ax.coastlines()
ax.set_global() # make sure everything is visible
return fig
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='pcolormesh_global_wrap3.png',
tolerance=1.42)
def test_pcolormesh_global_with_wrap3():
nx, ny = 33, 17
xbnds = np.linspace(-1.875, 358.125, nx, endpoint=True)
ybnds = np.linspace(91.25, -91.25, ny, endpoint=True)
xbnds, ybnds = np.meshgrid(xbnds, ybnds)
data = np.exp(np.sin(np.deg2rad(xbnds)) + np.cos(np.deg2rad(ybnds)))
# this step is not necessary, but makes the plot even harder to do (i.e.
# it really puts cartopy through its paces)
ybnds = np.append(ybnds, ybnds[:, 1:2], axis=1)
xbnds = np.append(xbnds, xbnds[:, 1:2] + 360, axis=1)
data = np.ma.concatenate([data, data[:, 0:1]], axis=1)
data = data[:-1, :-1]
data = np.ma.masked_greater(data, 2.6)
fig = plt.figure()
ax = fig.add_subplot(3, 1, 1, projection=ccrs.PlateCarree(-45))
c = ax.pcolormesh(xbnds, ybnds, data, transform=ccrs.PlateCarree(),
snap=False)
assert c._wrapped_collection_fix is not None, \
'No pcolormesh wrapping was done when it should have been.'
ax.coastlines()
ax.set_global() # make sure everything is visible
ax = fig.add_subplot(3, 1, 2, projection=ccrs.PlateCarree(-1.87499952))
ax.pcolormesh(xbnds, ybnds, data, transform=ccrs.PlateCarree(), snap=False)
ax.coastlines()
ax.set_global() # make sure everything is visible
ax = fig.add_subplot(3, 1, 3, projection=ccrs.Robinson(-2))
ax.pcolormesh(xbnds, ybnds, data, transform=ccrs.PlateCarree(), snap=False)
ax.coastlines()
ax.set_global() # make sure everything is visible
return fig
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='pcolormesh_global_wrap3.png',
tolerance=1.42)
def test_pcolormesh_set_array_with_mask():
"""Testing that set_array works with masked arrays properly."""
nx, ny = 33, 17
xbnds = np.linspace(-1.875, 358.125, nx, endpoint=True)
ybnds = np.linspace(91.25, -91.25, ny, endpoint=True)
xbnds, ybnds = np.meshgrid(xbnds, ybnds)
data = np.exp(np.sin(np.deg2rad(xbnds)) + np.cos(np.deg2rad(ybnds)))
# this step is not necessary, but makes the plot even harder to do (i.e.
# it really puts cartopy through its paces)
ybnds = np.append(ybnds, ybnds[:, 1:2], axis=1)
xbnds = np.append(xbnds, xbnds[:, 1:2] + 360, axis=1)
data = np.ma.concatenate([data, data[:, 0:1]], axis=1)
data = data[:-1, :-1]
data = np.ma.masked_greater(data, 2.6)
norm = plt.Normalize(np.min(data), np.max(data))
bad_data = np.ones(data.shape)
# Start with the opposite mask and then swap back in the set_array call
bad_data_mask = np.ma.array(bad_data, mask=~data.mask)
fig = plt.figure()
ax = fig.add_subplot(3, 1, 1, projection=ccrs.PlateCarree(-45))
c = ax.pcolormesh(xbnds, ybnds, bad_data,
norm=norm, transform=ccrs.PlateCarree(), snap=False)
c.set_array(data.ravel())
assert c._wrapped_collection_fix is not None, \
'No pcolormesh wrapping was done when it should have been.'
ax.coastlines()
ax.set_global() # make sure everything is visible
ax = fig.add_subplot(3, 1, 2, projection=ccrs.PlateCarree(-1.87499952))
c2 = ax.pcolormesh(xbnds, ybnds, bad_data_mask,
norm=norm, transform=ccrs.PlateCarree(), snap=False)
c2.set_array(data.ravel())
ax.coastlines()
ax.set_global() # make sure everything is visible
ax = fig.add_subplot(3, 1, 3, projection=ccrs.Robinson(-2))
ax.pcolormesh(xbnds, ybnds, data, transform=ccrs.PlateCarree(), snap=False)
ax.coastlines()
ax.set_global() # make sure everything is visible
return fig
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='pcolormesh_global_wrap3.png',
tolerance=1.42)
def test_pcolormesh_set_clim_with_mask():
"""Testing that set_clim works with masked arrays properly."""
nx, ny = 33, 17
xbnds = np.linspace(-1.875, 358.125, nx, endpoint=True)
ybnds = np.linspace(91.25, -91.25, ny, endpoint=True)
xbnds, ybnds = np.meshgrid(xbnds, ybnds)
data = np.exp(np.sin(np.deg2rad(xbnds)) + np.cos(np.deg2rad(ybnds)))
# this step is not necessary, but makes the plot even harder to do (i.e.
# it really puts cartopy through its paces)
ybnds = np.append(ybnds, ybnds[:, 1:2], axis=1)
xbnds = np.append(xbnds, xbnds[:, 1:2] + 360, axis=1)
data = np.ma.concatenate([data, data[:, 0:1]], axis=1)
data = data[:-1, :-1]
data = np.ma.masked_greater(data, 2.6)
bad_initial_norm = plt.Normalize(-100, 100)
fig = plt.figure()
ax = fig.add_subplot(3, 1, 1, projection=ccrs.PlateCarree(-45))
c = ax.pcolormesh(xbnds, ybnds, data, transform=ccrs.PlateCarree(),
norm=bad_initial_norm, snap=False)
assert c._wrapped_collection_fix is not None, \
'No pcolormesh wrapping was done when it should have been.'
ax.coastlines()
ax.set_global() # make sure everything is visible
ax = fig.add_subplot(3, 1, 2, projection=ccrs.PlateCarree(-1.87499952))
ax.pcolormesh(xbnds, ybnds, data, transform=ccrs.PlateCarree(), snap=False)
ax.coastlines()
ax.set_global() # make sure everything is visible
ax = fig.add_subplot(3, 1, 3, projection=ccrs.Robinson(-2))
ax.pcolormesh(xbnds, ybnds, data, transform=ccrs.PlateCarree(), snap=False)
ax.coastlines()
ax.set_global() # make sure everything is visible
# Fix clims on c so that test passes
c.set_clim(data.min(), data.max())
return fig
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='pcolormesh_limited_area_wrap.png',
tolerance=1.82)
def test_pcolormesh_limited_area_wrap():
# make up some realistic data with bounds (such as data from the UM's North
# Atlantic Europe model)
nx, ny = 22, 36
xbnds = np.linspace(311.91998291, 391.11999512, nx, endpoint=True)
ybnds = np.linspace(-23.59000015, 24.81000137, ny, endpoint=True)
x, y = np.meshgrid(xbnds, ybnds)
data = ((np.sin(np.deg2rad(x))) / 10. + np.exp(np.cos(np.deg2rad(y))))
data = data[:-1, :-1]
rp = ccrs.RotatedPole(pole_longitude=177.5, pole_latitude=37.5)
fig = plt.figure(figsize=(10, 6))
ax = fig.add_subplot(2, 2, 1, projection=ccrs.PlateCarree())
ax.pcolormesh(xbnds, ybnds, data, transform=rp, cmap='Spectral',
snap=False)
ax.coastlines()
ax = fig.add_subplot(2, 2, 2, projection=ccrs.PlateCarree(180))
ax.pcolormesh(xbnds, ybnds, data, transform=rp, cmap='Spectral',
snap=False)
ax.coastlines()
ax.set_global()
# draw the same plot, only more zoomed in, and using the 2d versions
# of the coordinates (just to test that 1d and 2d are both suitably
# being fixed)
ax = fig.add_subplot(2, 2, 3, projection=ccrs.PlateCarree())
ax.pcolormesh(x, y, data, transform=rp, cmap='Spectral', snap=False)
ax.coastlines()
ax.set_extent([-70, 0, 0, 80])
ax = fig.add_subplot(2, 2, 4, projection=rp)
ax.pcolormesh(xbnds, ybnds, data, transform=rp, cmap='Spectral',
snap=False)
ax.coastlines()
return fig
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='pcolormesh_single_column_wrap.png')
def test_pcolormesh_single_column_wrap():
# Check a wrapped mesh like test_pcolormesh_limited_area_wrap, but only use
# a single column, which could break depending on how wrapping is
# determined.
ny = 36
xbnds = np.array([360.9485619, 364.71999105])
ybnds = np.linspace(-23.59000015, 24.81000137, ny, endpoint=True)
x, y = np.meshgrid(xbnds, ybnds)
data = ((np.sin(np.deg2rad(x))) / 10. + np.exp(np.cos(np.deg2rad(y))))
data = data[:-1, :-1]
rp = ccrs.RotatedPole(pole_longitude=177.5, pole_latitude=37.5)
fig = plt.figure(figsize=(10, 6))
ax = fig.add_subplot(1, 1, 1, projection=ccrs.PlateCarree(180))
# TODO: Remove snap when updating this image
ax.pcolormesh(xbnds, ybnds, data, transform=rp, cmap='Spectral',
snap=False)
ax.coastlines()
ax.set_global()
return fig
def test_pcolormesh_diagonal_wrap():
# Check that a cell with the top edge on one side of the domain
# and the bottom edge on the other gets wrapped properly
xs = [[160, 170], [190, 200]]
ys = [[-10, -10], [10, 10]]
zs = [[0]]
ax = plt.axes(projection=ccrs.PlateCarree())
mesh = ax.pcolormesh(xs, ys, zs)
# And that the wrapped_collection is added
assert hasattr(mesh, "_wrapped_collection_fix")
def test_pcolormesh_nan_wrap():
# Check that data with nan's as input still creates
# the proper number of pcolor cells and those aren't
# masked in the process.
xs, ys = np.meshgrid([120, 160, 200], [-30, 0, 30])
data = np.ones((2, 2)) * np.nan
ax = plt.axes(projection=ccrs.PlateCarree())
mesh = ax.pcolormesh(xs, ys, data)
pcolor = getattr(mesh, "_wrapped_collection_fix")
assert len(pcolor.get_paths()) == 2
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='pcolormesh_goode_wrap.png')
def test_pcolormesh_goode_wrap():
# global data on an Interrupted Goode Homolosine projection
# shouldn't spill outside projection boundary
x = np.linspace(0, 360, 73)
y = np.linspace(-87.5, 87.5, 36)
X, Y = np.meshgrid(*[np.deg2rad(c) for c in (x, y)])
Z = np.cos(Y) + 0.375 * np.sin(2. * X)
Z = Z[:-1, :-1]
ax = plt.axes(projection=ccrs.InterruptedGoodeHomolosine(emphasis='land'))
ax.coastlines()
# TODO: Remove snap when updating this image
ax.pcolormesh(x, y, Z, transform=ccrs.PlateCarree(), snap=False)
return ax.figure
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='pcolormesh_mercator_wrap.png')
def test_pcolormesh_mercator_wrap():
x = np.linspace(0, 360, 73)
y = np.linspace(-87.5, 87.5, 36)
X, Y = np.meshgrid(*[np.deg2rad(c) for c in (x, y)])
Z = np.cos(Y) + 0.375 * np.sin(2. * X)
Z = Z[:-1, :-1]
ax = plt.axes(projection=ccrs.Mercator())
ax.coastlines()
ax.pcolormesh(x, y, Z, transform=ccrs.PlateCarree(), snap=False)
return ax.figure
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='pcolormesh_mercator_wrap.png')
def test_pcolormesh_wrap_set_array():
x = np.linspace(0, 360, 73)
y = np.linspace(-87.5, 87.5, 36)
X, Y = np.meshgrid(*[np.deg2rad(c) for c in (x, y)])
Z = np.cos(Y) + 0.375 * np.sin(2. * X)
Z = Z[:-1, :-1]
ax = plt.axes(projection=ccrs.Mercator())
norm = plt.Normalize(np.min(Z), np.max(Z))
ax.coastlines()
# Start off with bad data
coll = ax.pcolormesh(x, y, np.ones(Z.shape), norm=norm,
transform=ccrs.PlateCarree(), snap=False)
# Now update the plot with the set_array method
coll.set_array(Z.ravel())
return ax.figure
@pytest.mark.parametrize('shading, input_size, expected', [
pytest.param('auto', 3, 4, id='auto same size'),
pytest.param('auto', 4, 4, id='auto input larger'),
pytest.param('nearest', 3, 4, id='nearest same size'),
pytest.param('nearest', 4, 4, id='nearest input larger'),
pytest.param('flat', 4, 4, id='flat input larger'),
pytest.param('gouraud', 3, 3, id='gouraud same size')
])
def test_pcolormesh_shading(shading, input_size, expected):
# Testing that the coordinates are all broadcast as expected with
# the various shading options
# The data shape is (3, 3) and we are changing the input shape
# based upon that
ax = plt.axes(projection=ccrs.PlateCarree())
x = np.arange(input_size)
y = np.arange(input_size)
d = np.zeros((3, 3))
coll = ax.pcolormesh(x, y, d, shading=shading)
# We can use coll.get_coordinates() once MPL >= 3.5 is required
# For now, we use the private variable for testing
assert coll._coordinates.shape == (expected, expected, 2)
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='quiver_plate_carree.png')
def test_quiver_plate_carree():
x = np.arange(-60, 42.5, 2.5)
y = np.arange(30, 72.5, 2.5)
x2d, y2d = np.meshgrid(x, y)
u = np.cos(np.deg2rad(y2d))
v = np.cos(2. * np.deg2rad(x2d))
mag = (u**2 + v**2)**.5
plot_extent = [-60, 40, 30, 70]
fig = plt.figure(figsize=(6, 6))
# plot on native projection
ax = fig.add_subplot(2, 1, 1, projection=ccrs.PlateCarree())
ax.set_extent(plot_extent, crs=ccrs.PlateCarree())
ax.coastlines(resolution="110m")
ax.quiver(x, y, u, v, mag)
# plot on a different projection
ax = fig.add_subplot(2, 1, 2, projection=ccrs.NorthPolarStereo())
ax.set_extent(plot_extent, crs=ccrs.PlateCarree())
ax.coastlines()
ax.quiver(x, y, u, v, mag, transform=ccrs.PlateCarree())
return fig
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='quiver_rotated_pole.png')
def test_quiver_rotated_pole():
nx, ny = 22, 36
x = np.linspace(311.91998291, 391.11999512, nx, endpoint=True)
y = np.linspace(-23.59000015, 24.81000137, ny, endpoint=True)
x2d, y2d = np.meshgrid(x, y)
u = np.cos(np.deg2rad(y2d))
v = -2. * np.cos(2. * np.deg2rad(y2d)) * np.sin(np.deg2rad(x2d))
mag = (u**2 + v**2)**.5
rp = ccrs.RotatedPole(pole_longitude=177.5, pole_latitude=37.5)
plot_extent = [x[0], x[-1], y[0], y[-1]]
# plot on native projection
fig = plt.figure(figsize=(6, 6))
ax = fig.add_subplot(2, 1, 1, projection=rp)
ax.set_extent(plot_extent, crs=rp)
ax.coastlines()
ax.quiver(x, y, u, v, mag)
# plot on different projection
ax = fig.add_subplot(2, 1, 2, projection=ccrs.PlateCarree())
ax.set_extent(plot_extent, crs=rp)
ax.coastlines()
ax.quiver(x, y, u, v, mag, transform=rp)
return fig
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='quiver_regrid.png')
def test_quiver_regrid():
x = np.arange(-60, 42.5, 2.5)
y = np.arange(30, 72.5, 2.5)
x2d, y2d = np.meshgrid(x, y)
u = np.cos(np.deg2rad(y2d))
v = np.cos(2. * np.deg2rad(x2d))
mag = (u**2 + v**2)**.5
plot_extent = [-60, 40, 30, 70]
fig = plt.figure(figsize=(6, 3))
ax = fig.add_subplot(projection=ccrs.NorthPolarStereo())
ax.set_extent(plot_extent, crs=ccrs.PlateCarree())
ax.coastlines()
ax.quiver(x, y, u, v, mag, transform=ccrs.PlateCarree(),
regrid_shape=30)
return fig
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='quiver_regrid_with_extent.png',
tolerance=0.54)
def test_quiver_regrid_with_extent():
x = np.arange(-60, 42.5, 2.5)
y = np.arange(30, 72.5, 2.5)
x2d, y2d = np.meshgrid(x, y)
u = np.cos(np.deg2rad(y2d))
v = np.cos(2. * np.deg2rad(x2d))
mag = (u**2 + v**2)**.5
plot_extent = [-60, 40, 30, 70]
target_extent = [-3e6, 2e6, -6e6, -2.5e6]
fig = plt.figure(figsize=(6, 3))
ax = fig.add_subplot(projection=ccrs.NorthPolarStereo())
ax.set_extent(plot_extent, crs=ccrs.PlateCarree())
ax.coastlines()
ax.quiver(x, y, u, v, mag, transform=ccrs.PlateCarree(),
regrid_shape=10, target_extent=target_extent)
return fig
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='barbs_plate_carree.png')
def test_barbs():
x = np.arange(-60, 45, 5)
y = np.arange(30, 75, 5)
x2d, y2d = np.meshgrid(x, y)
u = 40 * np.cos(np.deg2rad(y2d))
v = 40 * np.cos(2. * np.deg2rad(x2d))
plot_extent = [-60, 40, 30, 70]
fig = plt.figure(figsize=(6, 6))
# plot on native projection
ax = fig.add_subplot(2, 1, 1, projection=ccrs.PlateCarree())
ax.set_extent(plot_extent, crs=ccrs.PlateCarree())
ax.coastlines(resolution="110m")
ax.barbs(x, y, u, v, length=4, linewidth=.25)
# plot on a different projection
ax = fig.add_subplot(2, 1, 2, projection=ccrs.NorthPolarStereo())
ax.set_extent(plot_extent, crs=ccrs.PlateCarree())
ax.coastlines(resolution="110m")
ax.barbs(x, y, u, v, transform=ccrs.PlateCarree(), length=4, linewidth=.25)
return fig
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='barbs_regrid.png')
def test_barbs_regrid():
x = np.arange(-60, 42.5, 2.5)
y = np.arange(30, 72.5, 2.5)
x2d, y2d = np.meshgrid(x, y)
u = 40 * np.cos(np.deg2rad(y2d))
v = 40 * np.cos(2. * np.deg2rad(x2d))
mag = (u**2 + v**2)**.5
plot_extent = [-60, 40, 30, 70]
fig = plt.figure(figsize=(6, 3))
ax = fig.add_subplot(projection=ccrs.NorthPolarStereo())
ax.set_extent(plot_extent, crs=ccrs.PlateCarree())
ax.coastlines()
ax.barbs(x, y, u, v, mag, transform=ccrs.PlateCarree(),
length=4, linewidth=.4, regrid_shape=20)
return fig
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='barbs_regrid_with_extent.png',
tolerance=0.54)
def test_barbs_regrid_with_extent():
x = np.arange(-60, 42.5, 2.5)
y = np.arange(30, 72.5, 2.5)
x2d, y2d = np.meshgrid(x, y)
u = 40 * np.cos(np.deg2rad(y2d))
v = 40 * np.cos(2. * np.deg2rad(x2d))
mag = (u**2 + v**2)**.5
plot_extent = [-60, 40, 30, 70]
target_extent = [-3e6, 2e6, -6e6, -2.5e6]
fig = plt.figure(figsize=(6, 3))
ax = fig.add_subplot(projection=ccrs.NorthPolarStereo())
ax.set_extent(plot_extent, crs=ccrs.PlateCarree())
ax.coastlines()
ax.barbs(x, y, u, v, mag, transform=ccrs.PlateCarree(),
length=4, linewidth=.25, regrid_shape=10,
target_extent=target_extent)
return fig
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='barbs_1d.png')
def test_barbs_1d():
x = np.array([20., 30., -17., 15.])
y = np.array([-1., 35., 11., 40.])
u = np.array([23., -18., 2., -11.])
v = np.array([5., -4., 19., 11.])
plot_extent = [-21, 40, -5, 45]
fig = plt.figure(figsize=(6, 5))
ax = fig.add_subplot(projection=ccrs.PlateCarree())
ax.set_extent(plot_extent, crs=ccrs.PlateCarree())
ax.coastlines(resolution="110m")
ax.barbs(x, y, u, v, transform=ccrs.PlateCarree(),
length=8, linewidth=1, color='#7f7f7f')
return fig
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='barbs_1d_transformed.png')
def test_barbs_1d_transformed():
x = np.array([20., 30., -17., 15.])
y = np.array([-1., 35., 11., 40.])
u = np.array([23., -18., 2., -11.])
v = np.array([5., -4., 19., 11.])
plot_extent = [-20, 31, -5, 45]
fig = plt.figure(figsize=(6, 5))
ax = fig.add_subplot(projection=ccrs.NorthPolarStereo())
ax.set_extent(plot_extent, crs=ccrs.PlateCarree())
ax.coastlines()
ax.barbs(x, y, u, v, transform=ccrs.PlateCarree(),
length=8, linewidth=1, color='#7f7f7f')
return fig
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(
filename='streamplot.png', style='mpl20',
tolerance=9.77 if MPL_VERSION.release[:2] < (3, 5) else 0.5)
def test_streamplot():
x = np.arange(-60, 42.5, 2.5)
y = np.arange(30, 72.5, 2.5)
x2d, y2d = np.meshgrid(x, y)
u = np.cos(np.deg2rad(y2d))
v = np.cos(2. * np.deg2rad(x2d))
mag = (u**2 + v**2)**.5
plot_extent = [-60, 40, 30, 70]
fig = plt.figure(figsize=(6, 3))
ax = fig.add_subplot(projection=ccrs.NorthPolarStereo())
ax.set_extent(plot_extent, crs=ccrs.PlateCarree())
ax.coastlines()
ax.streamplot(x, y, u, v, transform=ccrs.PlateCarree(),
density=(1.5, 2), color=mag, linewidth=2 * mag)
return fig
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare()
def test_annotate():
""" test a variety of annotate options on mulitple projections
Annotate defaults to coords passed as if they're in map projection space.
`transform` or `xycoords` & `textcoords` control the marker and text offset
through shared or independent projections or coordinates.
`transform` is a cartopy kwarg so expects a CRS,
`xycoords` and `textcoords` accept CRS or matplotlib args.
The various annotations below test a variety of the different combinations.
"""
# use IGH to test annotations cross projection splits and map boundaries
map_projection = ccrs.InterruptedGoodeHomolosine()
fig = plt.figure(figsize=(10, 5))
ax = fig.add_subplot(1, 1, 1, projection=map_projection)
ax.set_global()
ax.coastlines()
arrowprops = {'facecolor': 'red',
'arrowstyle': "-|>",
'connectionstyle': "arc3,rad=-0.2",
}
platecarree = ccrs.PlateCarree()
mpltransform = platecarree._as_mpl_transform(ax)
# Add annotation with xycoords as mpltransform as suggested here
# https://stackoverflow.com/questions/25416600/why-the-annotate-worked-unexpected-here-in-cartopy/25421922#25421922
ax.annotate('mpl xycoords', (-45, 43), xycoords=mpltransform,
size=5)
# Add annotation with xycoords as projection
ax.annotate('crs xycoords', (-75, 13), xycoords=platecarree,
size=5)
# set up coordinates in map projection space
map_coords = map_projection.transform_point(-175, -35, platecarree)
# Dont specifiy any args, default xycoords='data', transform=map projection
ax.annotate('default crs', map_coords, size=5)
# data in map projection using default transform, with
# text positioned in platecaree transform
ax.annotate('mixed crs transforms', map_coords, xycoords='data',
xytext=(-175, -55),
textcoords=platecarree,
size=5,
arrowprops=arrowprops,
)
# Add annotation with point and text via transform
ax.annotate('crs transform', (-75, -20), xytext=(0, -55),
transform=platecarree,
arrowprops=arrowprops,
)
# Add annotation with point via transform and text non transformed
ax.annotate('offset textcoords', (-149.8, 61.22), transform=platecarree,
xytext=(-35, 10), textcoords='offset points',
size=5,
ha='right',
arrowprops=arrowprops,
)
return fig
|