File: test_shapely_to_mpl.py

package info (click to toggle)
python-cartopy 0.21.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 14,668 kB
  • sloc: python: 15,101; makefile: 166; javascript: 66; sh: 6
file content (116 lines) | stat: -rw-r--r-- 4,021 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# Copyright Cartopy Contributors
#
# This file is part of Cartopy and is released under the LGPL license.
# See COPYING and COPYING.LESSER in the root of the repository for full
# licensing details.

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
from matplotlib.collections import PatchCollection
from matplotlib.path import Path
import pytest
import shapely.geometry as sgeom

import cartopy.crs as ccrs
import cartopy.mpl.patch as cpatch


# Note: Matplotlib is broken here
# https://github.com/matplotlib/matplotlib/issues/15946
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='poly_interiors.png', tolerance=3.1)
def test_polygon_interiors():
    fig = plt.figure()

    ax = fig.add_subplot(2, 1, 1, projection=ccrs.PlateCarree())
    ax.coastlines()
    ax.set_global()

    pth = Path([[0, -45], [60, -45], [60, 45], [0, 45], [0, 45],
                [10, -20], [10, 20], [40, 20], [40, -20], [10, 20]],
               [1, 2, 2, 2, 79, 1, 2, 2, 2, 79])

    patches_native = []
    patches = []
    for geos in cpatch.path_to_geos(pth):
        for pth in cpatch.geos_to_path(geos):
            patches.append(mpatches.PathPatch(pth))

        # buffer by 10 degrees (leaves a small hole in the middle)
        geos_buffered = geos.buffer(10)
        for pth in cpatch.geos_to_path(geos_buffered):
            patches_native.append(mpatches.PathPatch(pth))

    # Set high zorder to ensure the polygons are drawn on top of coastlines.
    collection = PatchCollection(patches_native, facecolor='red', alpha=0.4,
                                 transform=ax.projection, zorder=10)
    ax.add_collection(collection)

    collection = PatchCollection(patches, facecolor='yellow', alpha=0.4,
                                 transform=ccrs.Geodetic(), zorder=10)

    ax.add_collection(collection)

    # test multiple interior polygons
    ax = fig.add_subplot(2, 1, 2, projection=ccrs.PlateCarree(),
                         xlim=[-5, 15], ylim=[-5, 15])
    ax.coastlines(resolution="110m")

    exterior = np.array(sgeom.box(0, 0, 12, 12).exterior.coords)
    interiors = [np.array(sgeom.box(1, 1, 2, 2, ccw=False).exterior.coords),
                 np.array(sgeom.box(1, 8, 2, 9, ccw=False).exterior.coords)]
    poly = sgeom.Polygon(exterior, interiors)

    patches = []
    for pth in cpatch.geos_to_path(poly):
        patches.append(mpatches.PathPatch(pth))

    collection = PatchCollection(patches, facecolor='yellow', alpha=0.4,
                                 transform=ccrs.Geodetic(), zorder=10)
    ax.add_collection(collection)

    return fig


@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='contour_with_interiors.png')
def test_contour_interiors():
    # produces a polygon with multiple holes:
    nx, ny = 10, 10
    numlev = 2
    lons, lats = np.meshgrid(np.linspace(-50, 50, nx),
                             np.linspace(-45, 45, ny))
    data = np.sin(np.sqrt(lons ** 2 + lats ** 2))
    fig = plt.figure()

    ax = fig.add_subplot(2, 2, 1, projection=ccrs.PlateCarree())
    ax.set_global()
    ax.contourf(lons, lats, data, numlev, transform=ccrs.PlateCarree())
    ax.coastlines()

    ax = fig.add_subplot(2, 2, 2, projection=ccrs.Robinson())
    ax.set_global()
    ax.contourf(lons, lats, data, numlev, transform=ccrs.PlateCarree())
    ax.coastlines()

    # produces singular polygons (zero area polygons)

    numlev = 2
    x, y = np.meshgrid(np.arange(-5.5, 5.5, 0.25), np.arange(-5.5, 5.5, 0.25))
    dim = x.shape[0]
    data = np.sin(np.sqrt(x ** 2 + y ** 2))
    lats = np.arange(dim) + 30
    lons = np.arange(dim) - 20

    ax = fig.add_subplot(2, 2, 3, projection=ccrs.PlateCarree())
    ax.set_global()
    ax.contourf(lons, lats, data, numlev, transform=ccrs.PlateCarree())
    ax.coastlines()

    ax = fig.add_subplot(2, 2, 4, projection=ccrs.Robinson())
    ax.set_global()
    ax.contourf(lons, lats, data, numlev, transform=ccrs.PlateCarree())
    ax.coastlines()

    return fig