1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
# Copyright Crown and Cartopy Contributors
#
# This file is part of Cartopy and is released under the BSD 3-clause license.
# See LICENSE in the root of the repository for full licensing details.
import numpy as np
from numpy.testing import assert_array_almost_equal
import pyproj
import pytest
import cartopy.crs as ccrs
from .helpers import check_proj_params
def test_defaults():
crs = ccrs.LambertConformal()
other_args = {'ellps=WGS84', 'lon_0=-96.0', 'lat_0=39.0', 'x_0=0.0',
'y_0=0.0', 'lat_1=33', 'lat_2=45'}
check_proj_params('lcc', crs, other_args)
def test_default_with_cutoff():
crs = ccrs.LambertConformal(cutoff=-80)
crs2 = ccrs.LambertConformal(cutoff=-80)
default = ccrs.LambertConformal()
other_args = {'ellps=WGS84', 'lon_0=-96.0', 'lat_0=39.0', 'x_0=0.0',
'y_0=0.0', 'lat_1=33', 'lat_2=45'}
check_proj_params('lcc', crs, other_args)
# Check the behaviour of !=, == and (not ==) for the different cutoffs.
assert crs == crs2
assert crs != default
assert hash(crs) != hash(default)
assert hash(crs) == hash(crs2)
assert_array_almost_equal(crs.y_limits,
(-49788019.81831982, 30793476.08487709))
def test_sphere():
"""Test LambertConformal with spherical globe. (#2377)"""
globe = ccrs.Globe(ellipse='sphere')
# This would error creating a boundary
crs = ccrs.LambertConformal(globe=globe)
assert np.all(np.isfinite(crs.x_limits))
assert np.all(np.isfinite(crs.y_limits))
def test_specific_lambert():
# This projection comes from EPSG Projection 3034 - ETRS89 / ETRS-LCC.
crs = ccrs.LambertConformal(central_longitude=10,
standard_parallels=(35, 65),
central_latitude=52,
false_easting=4000000,
false_northing=2800000,
globe=ccrs.Globe(ellipse='GRS80'))
other_args = {'ellps=GRS80', 'lon_0=10', 'lat_0=52',
'x_0=4000000', 'y_0=2800000', 'lat_1=35', 'lat_2=65'}
check_proj_params('lcc', crs, other_args)
def test_lambert_moon():
moon = ccrs.Globe(ellipse=None, semimajor_axis=1737400, semiminor_axis=1737400)
crs = ccrs.LambertConformal(globe=moon)
other_args = {'a=1737400', 'b=1737400', 'lat_0=39.0', 'lat_1=33', 'lat_2=45',
'lon_0=-96.0', 'x_0=0.0', 'y_0=0.0'}
check_proj_params('lcc', crs, other_args)
class Test_LambertConformal_standard_parallels:
def test_single_value(self):
crs = ccrs.LambertConformal(standard_parallels=[1.])
other_args = {'ellps=WGS84', 'lon_0=-96.0', 'lat_0=39.0',
'x_0=0.0', 'y_0=0.0', 'lat_1=1.0'}
check_proj_params('lcc', crs, other_args)
def test_no_parallel(self):
with pytest.raises(ValueError, match='1 or 2 standard parallels'):
ccrs.LambertConformal(standard_parallels=[])
def test_too_many_parallel(self):
with pytest.raises(ValueError, match='1 or 2 standard parallels'):
ccrs.LambertConformal(standard_parallels=[1, 2, 3])
def test_single_spole(self):
s_pole_crs = ccrs.LambertConformal(standard_parallels=[-1.])
expected_x = (-19939660, 19939660)
expected_y = (-735590302, -8183795)
if pyproj.__proj_version__ >= '9.2.0':
expected_x = (-19840440, 19840440)
expected_y = (-370239953, -8191953)
print(s_pole_crs.x_limits)
assert_array_almost_equal(s_pole_crs.x_limits,
expected_x,
decimal=0)
assert_array_almost_equal(s_pole_crs.y_limits,
expected_y,
decimal=0)
def test_single_npole(self):
n_pole_crs = ccrs.LambertConformal(standard_parallels=[1.])
expected_x = (-20130569, 20130569)
expected_y = (-8170229, 726200683)
if pyproj.__proj_version__ >= '9.2.0':
expected_x = (-20222156, 20222156)
expected_y = (-8164817, 360848719)
assert_array_almost_equal(n_pole_crs.x_limits,
expected_x,
decimal=0)
assert_array_almost_equal(n_pole_crs.y_limits,
expected_y,
decimal=0)
class TestLambertZoneII:
def setup_class(self):
self.point_a = (1.4868268900254693, 48.13277955695077)
self.point_b = (-2.3188020040300126, 48.68412929316207)
self.src_crs = ccrs.PlateCarree()
self.nan = float('nan')
def test_default(self):
proj = ccrs.LambertZoneII()
res = proj.transform_point(*self.point_a, src_crs=self.src_crs)
np.testing.assert_array_almost_equal(res,
(536690.18620, 2348515.62248),
decimal=5)
res = proj.transform_point(*self.point_b, src_crs=self.src_crs)
np.testing.assert_array_almost_equal(res,
(257199.57387, 2419655.71471),
decimal=5)
def test_nan(self):
proj = ccrs.LambertZoneII()
res = proj.transform_point(0.0, float('nan'), src_crs=self.src_crs)
assert np.all(np.isnan(res))
res = proj.transform_point(float('nan'), 0.0, src_crs=self.src_crs)
assert np.all(np.isnan(res))
|