1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
|
# Copyright Crown and Cartopy Contributors
#
# This file is part of Cartopy and is released under the BSD 3-clause license.
# See LICENSE in the root of the repository for full licensing details.
"""
Cartopy can produce gridlines and ticks in any projection and add
them to the current geoaxes projection, providing a way to add detailed
location information to the plots.
"""
import inspect
import itertools
import operator
import warnings
import matplotlib
import matplotlib.artist
import matplotlib.collections as mcollections
import matplotlib.text
import matplotlib.ticker as mticker
import matplotlib.transforms as mtrans
import numpy as np
import shapely
import shapely.geometry as sgeom
import cartopy
from cartopy.crs import PlateCarree, Projection, _RectangularProjection
from cartopy.mpl.ticker import (
LatitudeFormatter,
LatitudeLocator,
LongitudeFormatter,
LongitudeLocator,
)
degree_locator = mticker.MaxNLocator(nbins=9, steps=[1, 1.5, 1.8, 2, 3, 6, 10])
classic_locator = mticker.MaxNLocator(nbins=9)
classic_formatter = mticker.ScalarFormatter
_X_INLINE_PROJS = (
cartopy.crs.InterruptedGoodeHomolosine,
cartopy.crs.LambertConformal,
cartopy.crs.Mollweide,
cartopy.crs.Sinusoidal,
cartopy.crs.RotatedPole,
)
_POLAR_PROJS = (
cartopy.crs.NorthPolarStereo,
cartopy.crs.SouthPolarStereo,
cartopy.crs.Stereographic
)
_ROTATE_LABEL_PROJS = _POLAR_PROJS + (
cartopy.crs.AlbersEqualArea,
cartopy.crs.AzimuthalEquidistant,
cartopy.crs.EquidistantConic,
cartopy.crs.LambertConformal,
cartopy.crs.TransverseMercator,
cartopy.crs.Gnomonic,
cartopy.crs.ObliqueMercator,
)
def _lon_hemisphere(longitude):
"""Return the hemisphere (E, W or '' for 0) for the given longitude."""
# Wrap the longitude to the range -180 to 180, keeping positive 180s
lon_wrapped = ((longitude + 180) % 360) - 180
longitude = 180 if (longitude > 0 and lon_wrapped == -180) else lon_wrapped
if longitude > 0:
hemisphere = 'E'
elif longitude < 0:
hemisphere = 'W'
else:
hemisphere = ''
return hemisphere
def _lat_hemisphere(latitude):
"""Return the hemisphere (N, S or '' for 0) for the given latitude."""
if latitude > 0:
hemisphere = 'N'
elif latitude < 0:
hemisphere = 'S'
else:
hemisphere = ''
return hemisphere
def _east_west_formatted(longitude, num_format='g'):
hemisphere = _lon_hemisphere(longitude)
return f'{abs(longitude):{num_format}}\N{Degree Sign}{hemisphere}'
def _north_south_formatted(latitude, num_format='g'):
hemisphere = _lat_hemisphere(latitude)
return f'{abs(latitude):{num_format}}\N{Degree Sign}{hemisphere}'
#: A formatter which turns longitude values into nice longitudes such as 110W
LONGITUDE_FORMATTER = mticker.FuncFormatter(lambda v, pos:
_east_west_formatted(v))
#: A formatter which turns longitude values into nice longitudes such as 45S
LATITUDE_FORMATTER = mticker.FuncFormatter(lambda v, pos:
_north_south_formatted(v))
class Gridliner(matplotlib.artist.Artist):
def __init__(self, axes, crs, draw_labels=False, xlocator=None,
ylocator=None, collection_kwargs=None,
xformatter=None, yformatter=None, dms=False,
x_inline=None, y_inline=None, auto_inline=True,
xlim=None, ylim=None, rotate_labels=None,
xlabel_style=None, ylabel_style=None, labels_bbox_style=None,
xpadding=5, ypadding=5, offset_angle=25,
auto_update=None, formatter_kwargs=None):
"""
Artist used by :meth:`cartopy.mpl.geoaxes.GeoAxes.gridlines`
to add gridlines and tick labels to a map.
Parameters
----------
axes
The :class:`cartopy.mpl.geoaxes.GeoAxes` object to be drawn on.
crs
The :class:`cartopy.crs.CRS` defining the coordinate system that
the gridlines are drawn in.
draw_labels: optional
Toggle whether to draw labels. For finer control, attributes of
:class:`Gridliner` may be modified individually. Defaults to False.
- string: "x" or "y" to only draw labels of the respective
coordinate in the CRS.
- list: Can contain the side identifiers and/or coordinate
types to select which ones to draw.
For all labels one would use
`["x", "y", "top", "bottom", "left", "right", "geo"]`.
- dict: The keys are the side identifiers
("top", "bottom", "left", "right") and the values are the
coordinates ("x", "y"); this way you can precisely
decide what kind of label to draw and where.
For x labels on the bottom and y labels on the right you
could pass in `{"bottom": "x", "left": "y"}`.
Note that, by default, x and y labels are not drawn on left/right
and top/bottom edges respectively, unless explicitly requested.
xlocator: optional
A :class:`matplotlib.ticker.Locator` instance which will be used
to determine the locations of the gridlines in the x-coordinate of
the given CRS. Defaults to None, which implies automatic locating
of the gridlines.
ylocator: optional
A :class:`matplotlib.ticker.Locator` instance which will be used
to determine the locations of the gridlines in the y-coordinate of
the given CRS. Defaults to None, which implies automatic locating
of the gridlines.
xformatter: optional
A :class:`matplotlib.ticker.Formatter` instance to format labels
for x-coordinate gridlines. It defaults to None, which implies the
use of a :class:`cartopy.mpl.ticker.LongitudeFormatter` initiated
with the ``dms`` argument, if the crs is of
:class:`~cartopy.crs.PlateCarree` type.
yformatter: optional
A :class:`matplotlib.ticker.Formatter` instance to format labels
for y-coordinate gridlines. It defaults to None, which implies the
use of a :class:`cartopy.mpl.ticker.LatitudeFormatter` initiated
with the ``dms`` argument, if the crs is of
:class:`~cartopy.crs.PlateCarree` type.
collection_kwargs: optional
Dictionary controlling line properties, passed to
:class:`matplotlib.collections.Collection`. Defaults to None.
dms: bool
When default locators and formatters are used,
ticks are able to stop on minutes and seconds if minutes
is set to True, and not fraction of degrees.
x_inline: optional
Toggle whether the x labels drawn should be inline.
y_inline: optional
Toggle whether the y labels drawn should be inline.
auto_inline: optional
Set x_inline and y_inline automatically based on projection.
xlim: optional
Set a limit for the gridlines so that they do not go all the
way to the edge of the boundary. xlim can be a single number or
a (min, max) tuple. If a single number, the limits will be
(-xlim, +xlim).
ylim: optional
Set a limit for the gridlines so that they do not go all the
way to the edge of the boundary. ylim can be a single number or
a (min, max) tuple. If a single number, the limits will be
(-ylim, +ylim).
rotate_labels: optional, bool, str
Allow the rotation of non-inline labels.
- False: Do not rotate the labels.
- True: Rotate the labels parallel to the gridlines.
- None: no rotation except for some projections (default).
- A float: Rotate labels by this value in degrees.
xlabel_style: dict
A dictionary passed through to ``ax.text`` on x label creation
for styling of the text labels.
ylabel_style: dict
A dictionary passed through to ``ax.text`` on y label creation
for styling of the text labels.
labels_bbox_style: dict
bbox style for all text labels
xpadding: float
Padding for x labels. If negative, the labels are
drawn inside the map.
ypadding: float
Padding for y labels. If negative, the labels are
drawn inside the map.
offset_angle: float
Difference of angle in degrees from 90 to define when
a label must be flipped to be more readable.
For example, a value of 10 makes a vertical top label to be
flipped only at 100 degrees.
auto_update: bool, default=True
Whether to redraw the gridlines and labels when the figure is
updated.
.. deprecated:: 0.23
In future the gridlines and labels will always be redrawn.
formatter_kwargs: dict, optional
Options passed to the default formatters.
See :class:`~cartopy.mpl.ticker.LongitudeFormatter` and
:class:`~cartopy.mpl.ticker.LatitudeFormatter`
Notes
-----
The "x" and "y" labels for locators and formatters do not necessarily
correspond to X and Y, but to the first and second coordinates of the
specified CRS. For the common case of PlateCarree gridlines, these
correspond to longitudes and latitudes. Depending on the projection
used for the map, meridians and parallels can cross both the X axis and
the Y axis.
"""
super().__init__()
# We do not want the labels clipped to axes.
self.set_clip_on(False)
# Backcompat: the LineCollection was previously added directly to the
# axes, having a default zorder of 2.
self.set_zorder(2)
#: The :class:`~matplotlib.ticker.Locator` to use for the x
#: gridlines and labels.
if xlocator is not None:
if not isinstance(xlocator, mticker.Locator):
xlocator = mticker.FixedLocator(xlocator)
self.xlocator = xlocator
elif isinstance(crs, PlateCarree):
self.xlocator = LongitudeLocator(dms=dms)
else:
self.xlocator = classic_locator
#: The :class:`~matplotlib.ticker.Locator` to use for the y
#: gridlines and labels.
if ylocator is not None:
if not isinstance(ylocator, mticker.Locator):
ylocator = mticker.FixedLocator(ylocator)
self.ylocator = ylocator
elif isinstance(crs, PlateCarree):
self.ylocator = LatitudeLocator(dms=dms)
else:
self.ylocator = classic_locator
formatter_kwargs = {
**(formatter_kwargs or {}),
"dms": dms,
}
if xformatter is None:
if isinstance(crs, PlateCarree):
xformatter = LongitudeFormatter(**formatter_kwargs)
else:
xformatter = classic_formatter()
#: The :class:`~matplotlib.ticker.Formatter` to use for the lon labels.
self.xformatter = xformatter
if yformatter is None:
if isinstance(crs, PlateCarree):
yformatter = LatitudeFormatter(**formatter_kwargs)
else:
yformatter = classic_formatter()
#: The :class:`~matplotlib.ticker.Formatter` to use for the lat labels.
self.yformatter = yformatter
# Draw label argument
if isinstance(draw_labels, list):
# Select to which coordinate it is applied
if 'x' not in draw_labels and 'y' not in draw_labels:
value = True
elif 'x' in draw_labels and 'y' in draw_labels:
value = ['x', 'y']
elif 'x' in draw_labels:
value = 'x'
else:
value = 'y'
#: Whether to draw labels on the top of the map.
self.top_labels = value if 'top' in draw_labels else False
#: Whether to draw labels on the bottom of the map.
self.bottom_labels = value if 'bottom' in draw_labels else False
#: Whether to draw labels on the left hand side of the map.
self.left_labels = value if 'left' in draw_labels else False
#: Whether to draw labels on the right hand side of the map.
self.right_labels = value if 'right' in draw_labels else False
#: Whether to draw labels near the geographic limits of the map.
self.geo_labels = value if 'geo' in draw_labels else False
elif isinstance(draw_labels, dict):
self.top_labels = draw_labels.get('top', False)
self.bottom_labels = draw_labels.get('bottom', False)
self.left_labels = draw_labels.get('left', False)
self.right_labels = draw_labels.get('right', False)
self.geo_labels = draw_labels.get('geo', False)
else:
self.top_labels = draw_labels
self.bottom_labels = draw_labels
self.left_labels = draw_labels
self.right_labels = draw_labels
self.geo_labels = draw_labels
for loc in 'top', 'bottom', 'left', 'right', 'geo':
value = getattr(self, f'{loc}_labels')
if isinstance(value, str):
value = value.lower()
if (not isinstance(value, (list, bool)) and
value not in ('x', 'y')):
raise ValueError(f"Invalid draw_labels argument: {value}")
if auto_inline:
if isinstance(axes.projection, _X_INLINE_PROJS):
self.x_inline = True
self.y_inline = False
elif isinstance(axes.projection, _POLAR_PROJS):
self.x_inline = False
self.y_inline = True
else:
self.x_inline = False
self.y_inline = False
# overwrite auto_inline if necessary
if x_inline is not None:
#: Whether to draw x labels inline
self.x_inline = x_inline
elif not auto_inline:
self.x_inline = False
if y_inline is not None:
#: Whether to draw y labels inline
self.y_inline = y_inline
elif not auto_inline:
self.y_inline = False
# Apply inline args
if not draw_labels:
self.inline_labels = False
elif self.x_inline and self.y_inline:
self.inline_labels = True
elif self.x_inline:
self.inline_labels = "x"
elif self.y_inline:
self.inline_labels = "y"
else:
self.inline_labels = False
# Gridline limits so that the gridlines don't extend all the way
# to the edge of the boundary
self.xlim = xlim
self.ylim = ylim
#: Whether to draw the x gridlines.
self.xlines = True
#: Whether to draw the y gridlines.
self.ylines = True
#: A dictionary passed through to ``ax.text`` on x label creation
#: for styling of the text labels.
self.xlabel_style = xlabel_style or {}
#: A dictionary passed through to ``ax.text`` on y label creation
#: for styling of the text labels.
self.ylabel_style = ylabel_style or {}
#: bbox style for grid labels
self.labels_bbox_style = (
labels_bbox_style or {'pad': 0, 'visible': False})
#: The padding from the map edge to the x labels in points.
self.xpadding = xpadding
#: The padding from the map edge to the y labels in points.
self.ypadding = ypadding
#: Control the rotation of labels.
if rotate_labels is None:
rotate_labels = (
axes.projection.__class__ in _ROTATE_LABEL_PROJS)
if not isinstance(rotate_labels, (bool, float, int)):
raise ValueError("Invalid rotate_labels argument")
self.rotate_labels = rotate_labels
self.offset_angle = offset_angle
# Current transform
self.crs = crs
# if the user specifies tick labels at this point, check if they can
# be drawn. The same check will take place at draw time in case
# public attributes are changed after instantiation.
if draw_labels and not (x_inline or y_inline or auto_inline):
self._assert_can_draw_ticks()
#: The number of interpolation points which are used to draw the
#: gridlines.
self.n_steps = 100
#: A dictionary passed through to
#: ``matplotlib.collections.LineCollection`` on grid line creation.
self.collection_kwargs = collection_kwargs
#: The x gridlines which were created at draw time.
self.xline_artists = []
#: The y gridlines which were created at draw time.
self.yline_artists = []
# List of all labels (Label objects)
self._all_labels = []
# List of active labels (used in current draw)
self._labels = []
# Draw status
self._drawn = False
if auto_update is None:
auto_update = True
else:
# Note #2394 should be addressed before this deprecation expires.
calling_module = inspect.stack()[1].filename
warnings.warn(
"The auto_update parameter was deprecated at Cartopy 0.23. In future "
"the gridlines and labels will always be updated.",
DeprecationWarning,
stacklevel=(3 if calling_module.endswith('cartopy/mpl/geoaxes.py')
else 2))
self._auto_update = auto_update
def has_labels(self):
return len(self._labels) != 0
@property
def label_artists(self):
"""All the labels which were created at draw time"""
return [label.artist for label in self._labels]
@property
def top_label_artists(self):
"""The top labels which were created at draw time"""
return [label.artist for label in self._labels
if label.loc == "top"]
@property
def bottom_label_artists(self):
"""The bottom labels which were created at draw time"""
return [label.artist for label in self._labels
if label.loc == "bottom"]
@property
def left_label_artists(self):
"""The left labels which were created at draw time"""
return [label.artist for label in self._labels
if label.loc == "left"]
@property
def right_label_artists(self):
"""The right labels which were created at draw time"""
return [label.artist for label in self._labels
if label.loc == "right"]
@property
def geo_label_artists(self):
"""The geo spine labels which were created at draw time"""
return [label.artist for label in self._labels
if label.loc == "geo"]
@property
def x_inline_label_artists(self):
"""The x-coordinate inline labels which were created at draw time"""
return [label.artist for label in self._labels
if label.loc == "x_inline"]
@property
def y_inline_label_artists(self):
"""The y-coordinate inline labels which were created at draw time"""
return [label.artist for label in self._labels
if label.loc == "y_inline"]
@property
def xlabel_artists(self):
"""The x-coordinate labels which were created at draw time"""
return [label.artist for label in self._labels
if label.xy == "x"]
@property
def ylabel_artists(self):
"""The y-coordinate labels which were created at draw time"""
return [label.artist for label in self._labels
if label.xy == "y"]
def _crs_transform(self):
"""
Get the drawing transform for our gridlines.
Note
----
The drawing transform depends on the transform of our 'axes', so
it may change dynamically.
"""
transform = self.crs
if not isinstance(transform, mtrans.Transform):
transform = transform._as_mpl_transform(self.axes)
return transform
@staticmethod
def _round(x, base=5):
if np.isnan(base):
base = 5
return int(base * round(x / base))
def _find_midpoints(self, lim, ticks):
# Find the center point between each lat gridline.
if len(ticks) > 1:
cent = np.diff(ticks).mean() / 2
else:
cent = np.nan
if isinstance(self.axes.projection, _POLAR_PROJS):
lq = 90
uq = 90
else:
lq = 25
uq = 75
midpoints = (self._round(np.percentile(lim, lq), cent),
self._round(np.percentile(lim, uq), cent))
return midpoints
def _draw_this_label(self, xylabel, loc):
"""Should I draw this kind of label here?"""
draw_labels = getattr(self, loc + '_labels')
# By default, only x on top/bottom and only y on left/right
if draw_labels is True and loc != 'geo':
draw_labels = "x" if loc in ["top", "bottom"] else "y"
# Don't draw
if not draw_labels:
return False
# Explicit x or y
if isinstance(draw_labels, str):
draw_labels = [draw_labels]
# Explicit list of x and/or y
if isinstance(draw_labels, list) and xylabel not in draw_labels:
return False
return True
def _generate_labels(self):
"""
A generator to yield as many labels as needed, reusing existing ones
where possible.
"""
for label in self._all_labels:
yield label
while True:
# Ran out of existing labels. Create some empty ones.
new_artist = matplotlib.text.Text()
new_artist.set_figure(self.axes.figure)
new_artist.axes = self.axes
new_label = Label(new_artist, None, None, None)
self._all_labels.append(new_label)
yield new_label
def _draw_gridliner(self, nx=None, ny=None, renderer=None):
"""Create Artists for all visible elements and add to our Axes.
The following rules apply for the visibility of labels:
- X-type labels are plotted along the bottom, top and geo spines.
- Y-type labels are plotted along the left, right and geo spines.
- A label must not overlap another label marked as visible.
- A label must not overlap the map boundary.
- When a label is about to be hidden, its padding is slightly
increase until it can be drawn or until a padding limit is reached.
"""
# Update only when needed or requested
if self._drawn and not self._auto_update:
return
self._drawn = True
# Inits
lon_lim, lat_lim = self._axes_domain(nx=nx, ny=ny)
transform = self._crs_transform()
n_steps = self.n_steps
crs = self.crs
# Get nice ticks within crs domain
lon_ticks = self.xlocator.tick_values(lon_lim[0], lon_lim[1])
lat_ticks = self.ylocator.tick_values(lat_lim[0], lat_lim[1])
inf = max(lon_lim[0], crs.x_limits[0])
sup = min(lon_lim[1], crs.x_limits[1])
lon_ticks = [value for value in lon_ticks if inf <= value <= sup]
inf = max(lat_lim[0], crs.y_limits[0])
sup = min(lat_lim[1], crs.y_limits[1])
lat_ticks = [value for value in lat_ticks if inf <= value <= sup]
#####################
# Gridlines drawing #
#####################
collection_kwargs = self.collection_kwargs
if collection_kwargs is None:
collection_kwargs = {}
collection_kwargs = collection_kwargs.copy()
collection_kwargs['transform'] = transform
if not any(x in collection_kwargs for x in ['c', 'color']):
collection_kwargs.setdefault('color',
matplotlib.rcParams['grid.color'])
if not any(x in collection_kwargs for x in ['ls', 'linestyle']):
collection_kwargs.setdefault('linestyle',
matplotlib.rcParams['grid.linestyle'])
if not any(x in collection_kwargs for x in ['lw', 'linewidth']):
collection_kwargs.setdefault('linewidth',
matplotlib.rcParams['grid.linewidth'])
collection_kwargs.setdefault('clip_path', self.axes.patch)
# Meridians
lat_min, lat_max = lat_lim
if lat_ticks:
lat_min = min(lat_min, min(lat_ticks))
lat_max = max(lat_max, max(lat_ticks))
lon_lines = np.empty((len(lon_ticks), n_steps, 2))
lon_lines[:, :, 0] = np.array(lon_ticks)[:, np.newaxis]
lon_lines[:, :, 1] = np.linspace(
lat_min, lat_max, n_steps)[np.newaxis, :]
if self.xlines:
nx = len(lon_lines) + 1
# XXX this bit is cartopy specific. (for circular longitudes)
# Purpose: omit plotting the last x line,
# as it may overlap the first.
if (isinstance(crs, Projection) and
isinstance(crs, _RectangularProjection) and
abs(np.diff(lon_lim)) == abs(np.diff(crs.x_limits))):
nx -= 1
if self.xline_artists:
# Update existing collection.
lon_lc, = self.xline_artists
lon_lc.set(segments=lon_lines, **collection_kwargs)
else:
# Create new collection.
lon_lc = mcollections.LineCollection(lon_lines,
**collection_kwargs)
self.xline_artists.append(lon_lc)
# Parallels
lon_min, lon_max = lon_lim
if lon_ticks:
lon_min = min(lon_min, min(lon_ticks))
lon_max = max(lon_max, max(lon_ticks))
lat_lines = np.empty((len(lat_ticks), n_steps, 2))
lat_lines[:, :, 0] = np.linspace(lon_min, lon_max,
n_steps)[np.newaxis, :]
lat_lines[:, :, 1] = np.array(lat_ticks)[:, np.newaxis]
if self.ylines:
if self.yline_artists:
# Update existing collection.
lat_lc, = self.yline_artists
lat_lc.set(segments=lat_lines, **collection_kwargs)
else:
lat_lc = mcollections.LineCollection(lat_lines,
**collection_kwargs)
self.yline_artists.append(lat_lc)
#################
# Label drawing #
#################
# Clear drawn labels
self._labels.clear()
if not any((self.left_labels, self.right_labels, self.bottom_labels,
self.top_labels, self.inline_labels, self.geo_labels)):
return
self._assert_can_draw_ticks()
# Inits for labels
max_padding_factor = 5
delta_padding_factor = 0.2
spines_specs = {
'left': {
'index': 0,
'coord_type': "x",
'opcmp': operator.le,
'opval': max,
},
'bottom': {
'index': 1,
'coord_type': "y",
'opcmp': operator.le,
'opval': max,
},
'right': {
'index': 0,
'coord_type': "x",
'opcmp': operator.ge,
'opval': min,
},
'top': {
'index': 1,
'coord_type': "y",
'opcmp': operator.ge,
'opval': min,
},
}
for side, specs in spines_specs.items():
bbox = self.axes.spines[side].get_window_extent(renderer)
specs['coords'] = [
getattr(bbox, specs['coord_type'] + idx) for idx in "01"]
def update_artist(artist, renderer):
artist.update_bbox_position_size(renderer)
this_patch = artist.get_bbox_patch()
this_path = this_patch.get_path().transformed(
this_patch.get_transform())
return this_path
# Get the real map boundaries
self.axes.spines["geo"].get_window_extent(renderer) # update coords
map_boundary_path = self.axes.spines["geo"].get_path().transformed(
self.axes.spines["geo"].get_transform())
map_boundary = sgeom.Polygon(map_boundary_path.vertices)
if self.x_inline:
y_midpoints = self._find_midpoints(lat_lim, lat_ticks)
if self.y_inline:
x_midpoints = self._find_midpoints(lon_lim, lon_ticks)
# Cache a few things so they aren't re-calculated in the loops.
crs_transform = self._crs_transform().transform
inverse_data_transform = self.axes.transData.inverted().transform_point
# Create a generator for the Label objects.
generate_labels = self._generate_labels()
for xylabel, lines, line_ticks, formatter, label_style in (
('x', lon_lines, lon_ticks,
self.xformatter, self.xlabel_style.copy()),
('y', lat_lines, lat_ticks,
self.yformatter, self.ylabel_style.copy())):
x_inline = self.x_inline and xylabel == 'x'
y_inline = self.y_inline and xylabel == 'y'
padding = getattr(self, f'{xylabel}padding')
bbox_style = self.labels_bbox_style.copy()
if "bbox" in label_style:
bbox_style.update(label_style["bbox"])
label_style["bbox"] = bbox_style
formatter.set_locs(line_ticks)
for line_coords, tick_value in zip(lines, line_ticks):
# Intersection of line with map boundary
line_coords = crs_transform(line_coords)
infs = np.isnan(line_coords).any(axis=1)
line_coords = line_coords.compress(~infs, axis=0)
if line_coords.size == 0:
continue
line = sgeom.LineString(line_coords)
if not line.intersects(map_boundary):
continue
intersection = line.intersection(map_boundary)
del line
if intersection.is_empty:
continue
if isinstance(intersection, sgeom.MultiPoint):
if len(intersection) < 2:
continue
n2 = min(len(intersection), 3)
tails = [[(pt.x, pt.y)
for pt in intersection[:n2:n2 - 1]]]
heads = [[(pt.x, pt.y)
for pt in intersection[-1:-n2 - 1:-n2 + 1]]]
elif isinstance(intersection, (sgeom.LineString,
sgeom.MultiLineString)):
if isinstance(intersection, sgeom.LineString):
intersection = [intersection]
elif len(intersection.geoms) > 4:
# If lines are parallel, there will be many intersections
# merge them to get only one for the calculations below
merged_line = shapely.line_merge(intersection)
if isinstance(merged_line, sgeom.MultiLineString):
# our merge still produced a multilinestring, so
# manually concatenate the original coordinates
xy = np.concatenate(
[inter.coords for inter in intersection.geoms], axis=0)
merged_line = shapely.LineString(xy)
intersection = [merged_line]
else:
intersection = intersection.geoms
tails = []
heads = []
for inter in intersection:
if len(inter.coords) < 2:
continue
n2 = min(len(inter.coords), 8)
tails.append(inter.coords[:n2:n2 - 1])
heads.append(inter.coords[-1:-n2 - 1:-n2 + 1])
if not tails:
continue
elif isinstance(intersection, sgeom.GeometryCollection):
# This is a collection of Point and LineString that
# represent the same gridline. We only consider the first
# geometries, merge their coordinates and keep first two
# points to get only one tail ...
xy = []
for geom in intersection.geoms:
for coord in geom.coords:
xy.append(coord)
if len(xy) == 2:
break
if len(xy) == 2:
break
tails = [xy]
# ... and the last geometries, merge their coordinates and
# keep last two points to get only one head.
xy = []
for geom in reversed(intersection.geoms):
for coord in reversed(geom.coords):
xy.append(coord)
if len(xy) == 2:
break
if len(xy) == 2:
break
heads = [xy]
else:
warnings.warn(
'Unsupported intersection geometry for gridline '
f'labels: {intersection.__class__.__name__}')
continue
del intersection
# Loop on head and tail and plot label by extrapolation
for i, (pt0, pt1) in itertools.chain.from_iterable(
enumerate(pair) for pair in zip(tails, heads)):
# Initial text specs
x0, y0 = pt0
if x_inline or y_inline:
kw = {'rotation': 0, 'transform': self.crs,
'ha': 'center', 'va': 'center'}
loc = 'inline'
else:
x1, y1 = pt1
segment_angle = np.arctan2(y0 - y1,
x0 - x1) * 180 / np.pi
loc = self._get_loc_from_spine_intersection(
spines_specs, xylabel, x0, y0)
if not self._draw_this_label(xylabel, loc):
visible = False
kw = self._get_text_specs(segment_angle, loc, xylabel)
kw['transform'] = self._get_padding_transform(
segment_angle, loc, xylabel)
kw.update(label_style)
# Get x and y in data coords
pt0 = inverse_data_transform(pt0)
if y_inline:
# 180 degrees isn't formatted with a suffix and adds
# confusion if it's inline.
if abs(tick_value) == 180:
continue
x = x_midpoints[i]
y = tick_value
kw.update(clip_on=True)
y_set = True
else:
x = pt0[0]
y_set = False
if x_inline:
if abs(tick_value) == 180:
continue
x = tick_value
y = y_midpoints[i]
kw.update(clip_on=True)
elif not y_set:
y = pt0[1]
# Update generated label.
label = next(generate_labels)
text = formatter(tick_value)
artist = label.artist
artist.set(x=x, y=y, text=text, **kw)
# Update loc from spine overlapping now that we have a bbox
# of the label.
this_path = update_artist(artist, renderer)
if not x_inline and not y_inline and loc == 'geo':
new_loc = self._get_loc_from_spine_overlapping(
spines_specs, xylabel, this_path)
if new_loc and loc != new_loc:
loc = new_loc
transform = self._get_padding_transform(
segment_angle, loc, xylabel)
artist.set_transform(transform)
artist.update(
self._get_text_specs(
segment_angle, loc, xylabel))
artist.update(label_style.copy())
this_path = update_artist(artist, renderer)
# Is this kind label allowed to be drawn?
if not self._draw_this_label(xylabel, loc):
visible = False
elif x_inline or y_inline:
# Check that it does not overlap the map.
# Inline must be within the map.
# TODO: When Matplotlib clip path works on text, this
# clipping can be left to it.
center = (artist
.get_transform()
.transform_point(artist.get_position()))
visible = map_boundary_path.contains_point(center)
else:
# Now loop on padding factors until it does not overlap
# the boundary.
visible = False
padding_factor = 1
while padding_factor < max_padding_factor:
# Non-inline must not run through the outline.
if map_boundary_path.intersects_path(
this_path, filled=padding > 0):
# Apply new padding.
transform = self._get_padding_transform(
segment_angle, loc, xylabel,
padding_factor)
artist.set_transform(transform)
this_path = update_artist(artist, renderer)
padding_factor += delta_padding_factor
else:
visible = True
break
# Updates
label.set_visible(visible)
label.path = this_path
label.xy = xylabel
label.loc = loc
self._labels.append(label)
# Now check overlapping of ordered visible labels
if self._labels:
self._labels.sort(
key=operator.attrgetter("priority"), reverse=True)
visible_labels = []
for label in self._labels:
if label.get_visible():
for other_label in visible_labels:
if label.check_overlapping(other_label):
break
else:
visible_labels.append(label)
def _get_loc_from_angle(self, angle):
angle %= 360
if angle > 180:
angle -= 360
if abs(angle) <= 45:
loc = 'right'
elif abs(angle) >= 135:
loc = 'left'
elif angle > 45:
loc = 'top'
else: # (-135, -45)
loc = 'bottom'
return loc
def _get_loc_from_spine_overlapping(
self, spines_specs, xylabel, label_path):
"""Try to get the location from side spines and label path
Returns None if it does not apply
For instance, for each side, if any of label_path x coordinates
are beyond this side, the distance to this side is computed.
If several sides are matching (max 2), then the one with a greater
distance is kept.
This helps finding the side of labels for non-rectangular projection
with a rectangular map boundary.
"""
side_max = dist_max = None
for side, specs in spines_specs.items():
if specs['coord_type'] == xylabel:
continue
label_coords = label_path.vertices[:-1, specs['index']]
spine_coord = specs['opval'](specs['coords'])
if not specs['opcmp'](label_coords, spine_coord).any():
continue
if specs['opcmp'] is operator.ge: # top, right
dist = label_coords.min() - spine_coord
else:
dist = spine_coord - label_coords.max()
if side_max is None or dist > dist_max:
side_max = side
dist_max = dist
if side_max is None:
return "geo"
return side_max
def _get_loc_from_spine_intersection(self, spines_specs, xylabel, x, y):
"""Get the loc the intersection of a gridline with a spine
Defaults to "geo".
"""
if xylabel == "x":
sides = ["bottom", "top", "left", "right"]
else:
sides = ["left", "right", "bottom", "top"]
for side in sides:
xy = x if side in ["left", "right"] else y
coords = np.round(spines_specs[side]["coords"], 2)
if round(xy, 2) in coords:
return side
return "geo"
def _get_text_specs(self, angle, loc, xylabel):
"""Get rotation and alignments specs for a single label"""
# Angle from -180 to 180
if angle > 180:
angle -= 360
# Fake for geo spine
if loc == "geo":
loc = self._get_loc_from_angle(angle)
# Check rotation
if not self.rotate_labels:
# No rotation
kw = {'rotation': 0, "ha": "center", "va": "center"}
if loc == 'right':
kw.update(ha='left')
elif loc == 'left':
kw.update(ha='right')
elif loc == 'top':
kw.update(va='bottom')
elif loc == 'bottom':
kw.update(va='top')
else:
# Rotation along gridlines
if (isinstance(self.rotate_labels, (float, int)) and
not isinstance(self.rotate_labels, bool)):
angle = self.rotate_labels
kw = {'rotation': angle, 'rotation_mode': 'anchor', 'va': 'center'}
if (angle < 90 + self.offset_angle and
angle > -90 + self.offset_angle):
kw.update(ha="left", rotation=angle)
else:
kw.update(ha="right", rotation=angle + 180)
# Inside labels
if getattr(self, xylabel + "padding") < 0:
if "ha" in kw:
if kw["ha"] == "left":
kw["ha"] = "right"
elif kw["ha"] == "right":
kw["ha"] = "left"
if "va" in kw:
if kw["va"] == "top":
kw["va"] = "bottom"
elif kw["va"] == "bottom":
kw["va"] = "top"
return kw
def _get_padding_transform(
self, padding_angle, loc, xylabel, padding_factor=1):
"""Get transform from angle and padding for non-inline labels"""
# No rotation
if self.rotate_labels is False and loc != "geo":
padding_angle = {
'top': 90., 'right': 0., 'bottom': -90., 'left': 180.}[loc]
# Padding
if xylabel == "x":
padding = (self.xpadding if self.xpadding is not None
else matplotlib.rcParams['xtick.major.pad'])
else:
padding = (self.ypadding if self.ypadding is not None
else matplotlib.rcParams['ytick.major.pad'])
dx = padding_factor * padding * np.cos(padding_angle * np.pi / 180)
dy = padding_factor * padding * np.sin(padding_angle * np.pi / 180)
# Final transform
return mtrans.offset_copy(
self.axes.transData, fig=self.axes.figure,
x=dx, y=dy, units='points')
def _assert_can_draw_ticks(self):
"""
Check to see if ticks can be drawn. Either returns True or raises
an exception.
"""
# Check labelling is supported, currently a limited set of options.
if not isinstance(self.crs, PlateCarree):
raise TypeError(f'Cannot label {self.crs.__class__.__name__} '
'gridlines. Only PlateCarree gridlines are '
'currently supported.')
return True
def _axes_domain(self, nx=None, ny=None):
"""Return lon_range, lat_range"""
DEBUG = False
transform = self._crs_transform()
ax_transform = self.axes.transAxes
desired_trans = ax_transform - transform
nx = nx or 100
ny = ny or 100
x = np.linspace(1e-9, 1 - 1e-9, nx)
y = np.linspace(1e-9, 1 - 1e-9, ny)
x, y = np.meshgrid(x, y)
coords = np.column_stack((x.ravel(), y.ravel()))
in_data = desired_trans.transform(coords)
ax_to_bkg_patch = self.axes.transAxes - self.axes.patch.get_transform()
# convert the coordinates of the data to the background patches
# coordinates
background_coord = ax_to_bkg_patch.transform(coords)
ok = self.axes.patch.get_path().contains_points(background_coord)
if DEBUG:
import matplotlib.pyplot as plt
plt.plot(coords[ok, 0], coords[ok, 1], 'or',
clip_on=False, transform=ax_transform)
plt.plot(coords[~ok, 0], coords[~ok, 1], 'ob',
clip_on=False, transform=ax_transform)
inside = in_data[ok, :]
# If there were no data points in the axes we just use the x and y
# range of the projection.
if inside.size == 0:
lon_range = self.crs.x_limits
lat_range = self.crs.y_limits
else:
# np.isfinite must be used to prevent np.inf values that
# not filtered by np.nanmax for some projections
lat_max = np.compress(np.isfinite(inside[:, 1]),
inside[:, 1])
if lat_max.size == 0:
lon_range = self.crs.x_limits
lat_range = self.crs.y_limits
else:
lat_max = lat_max.max()
lon_range = np.nanmin(inside[:, 0]), np.nanmax(inside[:, 0])
lat_range = np.nanmin(inside[:, 1]), lat_max
# XXX Cartopy specific thing. Perhaps make this bit a specialisation
# in a subclass...
crs = self.crs
if isinstance(crs, Projection):
lon_range = np.clip(lon_range, *crs.x_limits)
lat_range = np.clip(lat_range, *crs.y_limits)
# if the limit is >90% of the full x limit, then just use the full
# x limit (this makes circular handling better)
prct = np.abs(np.diff(lon_range) / np.diff(crs.x_limits))
if prct > 0.9:
lon_range = crs.x_limits
if self.xlim is not None:
if np.iterable(self.xlim):
# tuple, list or ndarray was passed in: (-140, 160)
lon_range = self.xlim
else:
# A single int/float was passed in: 140
lon_range = (-self.xlim, self.xlim)
if self.ylim is not None:
if np.iterable(self.ylim):
# tuple, list or ndarray was passed in: (-140, 160)
lat_range = self.ylim
else:
# A single int/float was passed in: 140
lat_range = (-self.ylim, self.ylim)
return lon_range, lat_range
def get_visible_children(self):
r"""Return a list of the visible child `.Artist`\s."""
all_children = (self.xline_artists + self.yline_artists
+ self.label_artists)
return [c for c in all_children if c.get_visible()]
def get_tightbbox(self, renderer=None):
self._draw_gridliner(renderer=renderer)
bboxes = [c.get_tightbbox(renderer=renderer)
for c in self.get_visible_children()]
if bboxes:
return mtrans.Bbox.union(bboxes)
else:
return mtrans.Bbox.null()
def draw(self, renderer=None):
self._draw_gridliner(renderer=renderer)
for c in self.get_visible_children():
c.draw(renderer=renderer)
class Label:
"""Helper class to manage the attributes for a single label"""
def __init__(self, artist, path, xy, loc):
self.artist = artist
self.loc = loc
self.path = path
self.xy = xy
@property
def priority(self):
return self.loc in ["left", "right", "top", "bottom"]
def set_visible(self, value):
self.artist.set_visible(value)
def get_visible(self):
return self.artist.get_visible()
def check_overlapping(self, label):
overlapping = self.path.intersects_path(label.path)
if overlapping:
self.set_visible(False)
return overlapping
|