File: path.py

package info (click to toggle)
python-cartopy 0.25.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 13,152 kB
  • sloc: python: 16,526; makefile: 159; javascript: 66
file content (248 lines) | stat: -rw-r--r-- 8,633 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# Copyright Crown and Cartopy Contributors
#
# This file is part of Cartopy and is released under the BSD 3-clause license.
# See LICENSE in the root of the repository for full licensing details.
"""
Extra functionality that is primarily intended for developers, providing support for
transforming between Shapely geometries and Matplotlib paths.

See also `Shapely Geometric Objects
<https://shapely.readthedocs.io/en/latest/manual.html#geometric-objects>`_
and `Matplotlib Path API <https://matplotlib.org/stable/api/path_api.html>`_.

"""

from matplotlib.path import Path
import numpy as np
import shapely.geometry as sgeom

from cartopy.mpl import _MPL_38


def _ensure_path_closed(path):
    """
    Method to ensure that a path contains only closed sub-paths.

    Parameters
    ----------
    path
        A :class:`matplotlib.path.Path` instance.

    Returns
    -------
    path
        A :class:`matplotlib.path.Path` instance with only closed polygons.

    """
    # Split path into potential sub-paths and close all polygons
    # (explicitly disable path simplification applied in to_polygons)
    should_simplify = path.should_simplify
    try:
        path.should_simplify = False
        polygons = path.to_polygons()
    finally:
        path.should_simplify = should_simplify

    codes, vertices = [], []
    for poly in polygons:
        vertices.extend([poly[0], *poly])
        codes.extend([Path.MOVETO, *[Path.LINETO]*(len(poly) - 1), Path.CLOSEPOLY])

    return Path(vertices, codes)


def _path_segments(path, **kwargs):
    """
    Create an array of vertices and a corresponding array of codes from a
    :class:`matplotlib.path.Path`.

    Parameters
    ----------
    path
        A :class:`matplotlib.path.Path` instance.

    Other Parameters
    ----------------
    kwargs
        See `matplotlib.path.Path.iter_segments` for details of the keyword
        arguments.

    Returns
    -------
    vertices, codes
        A (vertices, codes) tuple, where vertices is a numpy array of
        coordinates, and codes is a numpy array of matplotlib path codes.
        See :class:`matplotlib.path.Path` for information on the types of
        codes and their meanings.

    """
    pth = path.cleaned(**kwargs)
    return pth.vertices[:-1, :], pth.codes[:-1]


def shapely_to_path(shape):
    """
    Create a :class:`matplotlib.path.Path` object that describes a shape.

    Parameters
    ----------
    shape
        :class:`shapely.Point`,
        :class:`shapely.LineString`,
        :class:`shapely.LinearRing`,
        :class:`shapely.Polygon`,
        :class:`shapely.MultiPoint`,
        :class:`shapely.MultiPolygon`,
        :class:`shapely.MultiLineString`,
        :class:`shapely.GeometryCollection`.

    Returns
    -------
    path
        :class:`matplotlib.path.Path`

    """
    if shape.is_empty:
        return Path(np.empty([0, 2]))
    elif isinstance(shape, sgeom.LinearRing):
        return Path(np.column_stack(shape.xy), closed=True)
    elif isinstance(shape, (sgeom.LineString, sgeom.Point)):
        return Path(np.column_stack(shape.xy))
    elif isinstance(shape, sgeom.Polygon):
        def poly_codes(poly):
            codes = np.ones(len(poly.xy[0])) * Path.LINETO
            codes[0] = Path.MOVETO
            codes[-1] = Path.CLOSEPOLY
            return codes
        vertices = np.concatenate([np.array(shape.exterior.xy)] +
                                  [np.array(ring.xy) for ring in
                                   shape.interiors], 1).T
        codes = np.concatenate([poly_codes(shape.exterior)] +
                               [poly_codes(ring) for ring in shape.interiors])
        return Path(vertices, codes)
    elif isinstance(shape, (sgeom.MultiPolygon, sgeom.GeometryCollection,
                            sgeom.MultiLineString, sgeom.MultiPoint)):
        paths = []
        for geom in shape.geoms:
            path = shapely_to_path(geom)
            if _MPL_38 or path.vertices.size > 0:
                # make_compound_path handling for empty paths was added at
                # https://github.com/matplotlib/matplotlib/pull/25252
                paths.append(path)
        return Path.make_compound_path(*paths)
    else:
        raise ValueError(f'Unsupported shape type {type(shape)}.')


def path_to_shapely(path):
    """
    Create a Shapely geometric object from a :class:`matplotlib.path.Path`.

    Parameters
    ----------
    path
        A :class:`matplotlib.path.Path` instance.

    Returns
    -------
    One of the following Shapely objects:

        :class:`shapely.Polygon`,
        :class:`shapely.LineString`
        :class:`shapely.Point`,
        :class:`shapely.MultiPolygon`
        :class:`shapely.MultiLineString`
        :class:`shapely.MultiPoint`
        :class:`shapely.GeometryCollection`.

    """
    # Convert path into numpy array of vertices (and associated codes)
    path_verts, path_codes = _path_segments(path, curves=False)

    # Split into subarrays such that each subarray consists of connected
    # line segments based on the start of each one being marked by a
    # matplotlib MOVETO code.
    verts_split_inds = np.where(path_codes == Path.MOVETO)[0]
    verts_split = np.split(path_verts, verts_split_inds)
    codes_split = np.split(path_codes, verts_split_inds)

    # Iterate through the vertices generating a list of
    # (external_poly, [internal_polygons]) tuples for the polygons and separate
    # lists for linestrings and points.
    points = []
    linestrings = []
    polygon_bits = []
    for path_verts, path_codes in zip(verts_split, codes_split):
        if len(path_verts) == 0:
            continue

        if path_codes[-1] == Path.CLOSEPOLY:
            path_verts[-1, :] = path_verts[0, :]

        verts_same_as_first = np.isclose(path_verts[0, :], path_verts[1:, :],
                                         rtol=1e-10, atol=1e-13)
        verts_same_as_first = np.logical_and.reduce(verts_same_as_first,
                                                    axis=1)

        if all(verts_same_as_first):
            points.append(sgeom.Point(path_verts[0, :]))
        elif not(path_verts.shape[0] > 4 and path_codes[-1] == Path.CLOSEPOLY):
            linestrings.append(sgeom.LineString(path_verts))
        else:
            geom = sgeom.Polygon(path_verts[:-1, :])
            # If geom is a Polygon and is contained within the last geom in
            # polygon_bits, it usually needs to be an interior to that geom (e.g. a
            # lake within a land mass).  Sometimes there is a further geom within
            # this interior (e.g. an island in a lake, or some instances of
            # contours).  This needs to be a new external geom in polygon_bits.
            if (len(polygon_bits) > 0 and polygon_bits[-1][0].contains(geom.exterior)):
                if any(internal.contains(geom) for internal in polygon_bits[-1][1]):
                    polygon_bits.append((geom, []))
                else:
                    polygon_bits[-1][1].append(geom)
            else:
                polygon_bits.append((geom, []))

    # Convert each (external_polygon, [internal_polygons]) pair into a
    # a shapely Polygon that encapsulates the internal polygons.
    polygons = []
    for external_poly, internal_polys in polygon_bits:
        if internal_polys:
            exteriors = [geom.exterior for geom in internal_polys]
            geom = sgeom.Polygon(external_poly.exterior, exteriors)
        else:
            geom = external_poly

        polygons.append(geom)

    # Remove any zero area Polygons
    def not_zero_poly(geom):
        return (not geom.is_empty and geom.area != 0)

    polygons = list(filter(not_zero_poly, polygons))

    # Figure out what type of object to return
    if not polygons:
        if not linestrings:
            if not points:
                # No geometries.  Return an empty point
                return sgeom.Point()
            elif len(points) > 1:
                return sgeom.MultiPoint(points)
            else:
                return points[0]
        elif not points:
            if len(linestrings) > 1:
                return sgeom.MultiLineString(linestrings)
            else:
                return linestrings[0]
    else:
        if not linestrings and not points:
            if len(polygons) > 1:
                return sgeom.MultiPolygon(polygons)
            else:
                return polygons[0]

    # If we got to here, we have at least two types of geometry, so return
    # a geometry collection.
    return sgeom.GeometryCollection(polygons + linestrings + points)