1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
# Copyright Crown and Cartopy Contributors
#
# This file is part of Cartopy and is released under the BSD 3-clause license.
# See LICENSE in the root of the repository for full licensing details.
"""
Tests for the Equidistant Conic coordinate system.
"""
import numpy as np
from numpy.testing import assert_almost_equal, assert_array_almost_equal
import pyproj
import pytest
import cartopy.crs as ccrs
from .helpers import check_proj_params
class TestEquidistantConic:
def test_default(self):
eqdc = ccrs.EquidistantConic()
other_args = {'ellps=WGS84', 'lon_0=0.0', 'lat_0=0.0', 'x_0=0.0',
'y_0=0.0', 'lat_1=20.0', 'lat_2=50.0'}
check_proj_params('eqdc', eqdc, other_args)
expected_x = (-22784919.35600352, 22784919.35600352)
expected_y = (-10001965.729313632, 17558791.85156368)
if pyproj.__proj_version__ >= '9.2.0':
expected_x = (-22784919.3559981, 22784919.3559981)
expected_y = (-10001965.72931272, 17558791.85157471)
assert_almost_equal(np.array(eqdc.x_limits),
expected_x,
decimal=7)
assert_almost_equal(np.array(eqdc.y_limits),
expected_y,
decimal=7)
def test_eccentric_globe(self):
globe = ccrs.Globe(semimajor_axis=1000, semiminor_axis=500,
ellipse=None)
eqdc = ccrs.EquidistantConic(globe=globe)
other_args = {'a=1000', 'b=500', 'lon_0=0.0', 'lat_0=0.0', 'x_0=0.0',
'y_0=0.0', 'lat_1=20.0', 'lat_2=50.0'}
check_proj_params('eqdc', eqdc, other_args)
expected_x = (-3016.869847713461, 3016.869847713461)
expected_y = (-1216.6029342241113, 2511.0574375797723)
if pyproj.__proj_version__ >= '9.2.0':
expected_x = (-2960.1009481, 2960.1009481)
expected_y = (-1211.05573766, 2606.04249537)
assert_almost_equal(np.array(eqdc.x_limits),
expected_x,
decimal=7)
assert_almost_equal(np.array(eqdc.y_limits),
expected_y,
decimal=7)
def test_eastings(self):
eqdc_offset = ccrs.EquidistantConic(false_easting=1234,
false_northing=-4321)
other_args = {'ellps=WGS84', 'lon_0=0.0', 'lat_0=0.0', 'x_0=1234',
'y_0=-4321', 'lat_1=20.0', 'lat_2=50.0'}
check_proj_params('eqdc', eqdc_offset, other_args)
@pytest.mark.parametrize('lon', [-10.0, 10.0])
def test_central_longitude(self, lon):
eqdc = ccrs.EquidistantConic()
eqdc_offset = ccrs.EquidistantConic(central_longitude=lon)
other_args = {'ellps=WGS84', f'lon_0={lon}', 'lat_0=0.0',
'x_0=0.0', 'y_0=0.0', 'lat_1=20.0', 'lat_2=50.0'}
check_proj_params('eqdc', eqdc_offset, other_args)
assert_array_almost_equal(
eqdc_offset.boundary.coords,
eqdc.boundary.coords,
decimal=0,
)
def test_standard_parallels(self):
eqdc = ccrs.EquidistantConic(standard_parallels=(13, 37))
other_args = {'ellps=WGS84', 'lon_0=0.0', 'lat_0=0.0', 'x_0=0.0',
'y_0=0.0', 'lat_1=13', 'lat_2=37'}
check_proj_params('eqdc', eqdc, other_args)
eqdc = ccrs.EquidistantConic(standard_parallels=(13, ))
other_args = {'ellps=WGS84', 'lon_0=0.0', 'lat_0=0.0', 'x_0=0.0',
'y_0=0.0', 'lat_1=13'}
check_proj_params('eqdc', eqdc, other_args)
eqdc = ccrs.EquidistantConic(standard_parallels=13)
other_args = {'ellps=WGS84', 'lon_0=0.0', 'lat_0=0.0', 'x_0=0.0',
'y_0=0.0', 'lat_1=13'}
check_proj_params('eqdc', eqdc, other_args)
def test_sphere_transform(self):
# USGS Professional Paper 1395, pg 298
globe = ccrs.Globe(semimajor_axis=1.0, semiminor_axis=1.0,
ellipse=None)
lat_1 = 29.5
lat_2 = 45.5
eqdc = ccrs.EquidistantConic(central_longitude=-96.0,
central_latitude=23.0,
standard_parallels=(lat_1, lat_2),
globe=globe)
geodetic = eqdc.as_geodetic()
other_args = {'a=1.0', 'b=1.0', 'lon_0=-96.0', 'lat_0=23.0', 'x_0=0.0',
'y_0=0.0', 'lat_1=29.5', 'lat_2=45.5'}
check_proj_params('eqdc', eqdc, other_args)
assert_almost_equal(np.array(eqdc.x_limits),
(-3.520038619089038, 3.520038619089038),
decimal=7)
assert_almost_equal(np.array(eqdc.y_limits),
(-1.9722220547535922, 2.7066811021065535),
decimal=7)
result = eqdc.transform_point(-75.0, 35.0, geodetic)
assert_almost_equal(result, (0.2952057, 0.2424021), decimal=7)
def test_ellipsoid_transform(self):
# USGS Professional Paper 1395, pp 299--300
globe = ccrs.Globe(semimajor_axis=6378206.4,
flattening=1 - np.sqrt(1 - 0.00676866),
ellipse=None)
lat_1 = 29.5
lat_2 = 45.5
eqdc = ccrs.EquidistantConic(central_latitude=23.0,
central_longitude=-96.0,
standard_parallels=(lat_1, lat_2),
globe=globe)
geodetic = eqdc.as_geodetic()
other_args = {'a=6378206.4', 'f=0.003390076308689371', 'lon_0=-96.0',
'lat_0=23.0', 'x_0=0.0', 'y_0=0.0', 'lat_1=29.5',
'lat_2=45.5'}
check_proj_params('eqdc', eqdc, other_args)
expected_x = (-22421870.719894886, 22421870.719894886)
expected_y = (-12546277.778958388, 17260638.403203618)
if pyproj.__proj_version__ >= '9.2.0':
expected_x = (-22421870.71988974, 22421870.71988976)
expected_y = (-12546277.77895742, 17260638.403216)
assert_almost_equal(np.array(eqdc.x_limits),
expected_x,
decimal=7)
assert_almost_equal(np.array(eqdc.y_limits),
expected_y,
decimal=7)
result = eqdc.transform_point(-75.0, 35.0, geodetic)
assert_almost_equal(result, (1885051.9, 1540507.6), decimal=1)
|