File: test_contour.py

package info (click to toggle)
python-cartopy 0.25.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 13,152 kB
  • sloc: python: 16,526; makefile: 159; javascript: 66
file content (148 lines) | stat: -rw-r--r-- 5,658 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# Copyright Crown and Cartopy Contributors
#
# This file is part of Cartopy and is released under the BSD 3-clause license.
# See LICENSE in the root of the repository for full licensing details.

import matplotlib.pyplot as plt
import numpy as np
from numpy.testing import assert_array_almost_equal
import pytest

import cartopy.crs as ccrs
from cartopy.tests.conftest import requires_scipy


def test_contour_plot_bounds():
    x = np.linspace(-2763217.0, 2681906.0, 200)
    y = np.linspace(-263790.62, 3230840.5, 130)
    data = np.hypot(*np.meshgrid(x, y)) / 2e5

    proj_lcc = ccrs.LambertConformal(central_longitude=-95,
                                     central_latitude=25,
                                     standard_parallels=[25])
    ax = plt.axes(projection=proj_lcc)
    ax.contourf(x, y, data, levels=np.arange(0, 40, 1))
    assert_array_almost_equal(ax.get_extent(),
                              np.array([x[0], x[-1], y[0], y[-1]]))

    # Levels that don't include data should not fail.
    plt.figure()
    ax = plt.axes(projection=proj_lcc)
    ax.contourf(x, y, data, levels=np.max(data) + np.arange(1, 3))


def test_contour_doesnt_shrink():
    xglobal = np.linspace(-180, 180)
    yglobal = np.linspace(-90, 90)
    xsmall = np.linspace(-30, 30)
    ysmall = np.linspace(-30, 30)
    data = np.hypot(*np.meshgrid(xglobal, yglobal))

    proj = ccrs.PlateCarree()

    ax = plt.axes(projection=proj)
    ax.contourf(xglobal, yglobal, data)
    expected = np.array([xglobal[0], xglobal[-1], yglobal[0], yglobal[-1]])
    assert_array_almost_equal(ax.get_extent(), expected)

    # Make sure that a call to contour(f) doesn't shrink the already set bounds
    ax.contour(xsmall, ysmall, data)
    assert_array_almost_equal(ax.get_extent(), expected)
    ax.contourf(xsmall, ysmall, data)
    assert_array_almost_equal(ax.get_extent(), expected)


@pytest.mark.parametrize('func', ['contour', 'contourf'])
def test_plot_after_contour_doesnt_shrink(func):
    xglobal = np.linspace(-180, 180)
    yglobal = np.linspace(-90, 90.00001)

    data = np.hypot(*np.meshgrid(xglobal, yglobal))

    target_proj = ccrs.PlateCarree(central_longitude=200)
    source_proj = ccrs.PlateCarree()

    ax = plt.axes(projection=target_proj)
    test_func = getattr(ax, func)
    test_func(xglobal, yglobal, data, transform=source_proj)
    ax.plot([10, 20], [20, 30], transform=source_proj)
    expected = np.array([xglobal[0], xglobal[-1], yglobal[0], 90])
    assert_array_almost_equal(ax.get_extent(), expected)


@requires_scipy
def test_contour_linear_ring():
    """Test contourf with a section that only has 3 points."""
    from scipy.interpolate import NearestNDInterpolator
    from scipy.signal import convolve2d

    ax = plt.axes([0.01, 0.05, 0.898, 0.85], projection=ccrs.Mercator(),
                  aspect='equal')
    ax.set_extent([-99.6, -89.0, 39.8, 45.5])

    xbnds = ax.get_xlim()
    ybnds = ax.get_ylim()
    ll = ccrs.Geodetic().transform_point(xbnds[0], ybnds[0], ax.projection)
    ul = ccrs.Geodetic().transform_point(xbnds[0], ybnds[1], ax.projection)
    ur = ccrs.Geodetic().transform_point(xbnds[1], ybnds[1], ax.projection)
    lr = ccrs.Geodetic().transform_point(xbnds[1], ybnds[0], ax.projection)
    xi = np.linspace(min(ll[0], ul[0]), max(lr[0], ur[0]), 100)
    yi = np.linspace(min(ll[1], ul[1]), max(ul[1], ur[1]), 100)
    xi, yi = np.meshgrid(xi, yi)
    nn = NearestNDInterpolator((np.arange(-94, -85), np.arange(36, 45)),
                               np.arange(9))
    vals = nn(xi, yi)
    lons = xi
    lats = yi
    window = np.ones((6, 6))
    vals = convolve2d(vals, window / window.sum(), mode='same',
                      boundary='symm')
    ax.contourf(lons, lats, vals, np.arange(9), transform=ccrs.PlateCarree())

    plt.draw()


def test_contour_update_bounds():
    """Test that contour updates the extent"""
    xs, ys = np.meshgrid(np.linspace(0, 360), np.linspace(-80, 80))
    zs = ys**2
    ax = plt.axes(projection=ccrs.Orthographic())
    ax.contour(xs, ys, zs, transform=ccrs.PlateCarree())
    # Force a draw, which is a smoke test to make sure contouring
    # doesn't raise with an Orthographic projection
    # GH issue 1673
    plt.draw()


@pytest.mark.parametrize('func', ['contour', 'contourf'])
def test_contourf_transform_first(func):
    """Test the fast-path option for filled contours."""
    # Gridded data that needs to be wrapped
    x = np.arange(360)
    y = np.arange(-25, 26)
    xx, yy = np.meshgrid(x, y)
    z = xx + yy**2

    ax = plt.axes(projection=ccrs.PlateCarree())
    test_func = getattr(ax, func)
    # Can't handle just Z input with the transform_first
    with pytest.raises(ValueError,
                       match="The X and Y arguments must be provided"):
        test_func(z, transform=ccrs.PlateCarree(),
                  transform_first=True)
    # X and Y must also be 2-dimensional
    with pytest.raises(ValueError,
                       match="The X and Y arguments must be gridded"):
        test_func(x, y, z, transform=ccrs.PlateCarree(),
                  transform_first=True)

    # When calculating the contour in projection-space the extent
    # will now be the extent of the transformed points (-179, 180, -25, 25)
    test_func(xx, yy, z, transform=ccrs.PlateCarree(),
              transform_first=True)
    assert_array_almost_equal(ax.get_extent(), (-179, 180, -25, 25))

    # The extent without the transform_first should be all the way out to -180
    test_func(xx, yy, z, transform=ccrs.PlateCarree(),
              transform_first=False)
    assert_array_almost_equal(ax.get_extent(), (-180, 180, -25, 25))