1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
# Copyright Crown and Cartopy Contributors
#
# This file is part of Cartopy and is released under the BSD 3-clause license.
# See LICENSE in the root of the repository for full licensing details.
import matplotlib.pyplot as plt
import numpy as np
from numpy.testing import assert_array_almost_equal
import pytest
import cartopy.crs as ccrs
from cartopy.tests.conftest import requires_scipy
def test_contour_plot_bounds():
x = np.linspace(-2763217.0, 2681906.0, 200)
y = np.linspace(-263790.62, 3230840.5, 130)
data = np.hypot(*np.meshgrid(x, y)) / 2e5
proj_lcc = ccrs.LambertConformal(central_longitude=-95,
central_latitude=25,
standard_parallels=[25])
ax = plt.axes(projection=proj_lcc)
ax.contourf(x, y, data, levels=np.arange(0, 40, 1))
assert_array_almost_equal(ax.get_extent(),
np.array([x[0], x[-1], y[0], y[-1]]))
# Levels that don't include data should not fail.
plt.figure()
ax = plt.axes(projection=proj_lcc)
ax.contourf(x, y, data, levels=np.max(data) + np.arange(1, 3))
def test_contour_doesnt_shrink():
xglobal = np.linspace(-180, 180)
yglobal = np.linspace(-90, 90)
xsmall = np.linspace(-30, 30)
ysmall = np.linspace(-30, 30)
data = np.hypot(*np.meshgrid(xglobal, yglobal))
proj = ccrs.PlateCarree()
ax = plt.axes(projection=proj)
ax.contourf(xglobal, yglobal, data)
expected = np.array([xglobal[0], xglobal[-1], yglobal[0], yglobal[-1]])
assert_array_almost_equal(ax.get_extent(), expected)
# Make sure that a call to contour(f) doesn't shrink the already set bounds
ax.contour(xsmall, ysmall, data)
assert_array_almost_equal(ax.get_extent(), expected)
ax.contourf(xsmall, ysmall, data)
assert_array_almost_equal(ax.get_extent(), expected)
@pytest.mark.parametrize('func', ['contour', 'contourf'])
def test_plot_after_contour_doesnt_shrink(func):
xglobal = np.linspace(-180, 180)
yglobal = np.linspace(-90, 90.00001)
data = np.hypot(*np.meshgrid(xglobal, yglobal))
target_proj = ccrs.PlateCarree(central_longitude=200)
source_proj = ccrs.PlateCarree()
ax = plt.axes(projection=target_proj)
test_func = getattr(ax, func)
test_func(xglobal, yglobal, data, transform=source_proj)
ax.plot([10, 20], [20, 30], transform=source_proj)
expected = np.array([xglobal[0], xglobal[-1], yglobal[0], 90])
assert_array_almost_equal(ax.get_extent(), expected)
@requires_scipy
def test_contour_linear_ring():
"""Test contourf with a section that only has 3 points."""
from scipy.interpolate import NearestNDInterpolator
from scipy.signal import convolve2d
ax = plt.axes([0.01, 0.05, 0.898, 0.85], projection=ccrs.Mercator(),
aspect='equal')
ax.set_extent([-99.6, -89.0, 39.8, 45.5])
xbnds = ax.get_xlim()
ybnds = ax.get_ylim()
ll = ccrs.Geodetic().transform_point(xbnds[0], ybnds[0], ax.projection)
ul = ccrs.Geodetic().transform_point(xbnds[0], ybnds[1], ax.projection)
ur = ccrs.Geodetic().transform_point(xbnds[1], ybnds[1], ax.projection)
lr = ccrs.Geodetic().transform_point(xbnds[1], ybnds[0], ax.projection)
xi = np.linspace(min(ll[0], ul[0]), max(lr[0], ur[0]), 100)
yi = np.linspace(min(ll[1], ul[1]), max(ul[1], ur[1]), 100)
xi, yi = np.meshgrid(xi, yi)
nn = NearestNDInterpolator((np.arange(-94, -85), np.arange(36, 45)),
np.arange(9))
vals = nn(xi, yi)
lons = xi
lats = yi
window = np.ones((6, 6))
vals = convolve2d(vals, window / window.sum(), mode='same',
boundary='symm')
ax.contourf(lons, lats, vals, np.arange(9), transform=ccrs.PlateCarree())
plt.draw()
def test_contour_update_bounds():
"""Test that contour updates the extent"""
xs, ys = np.meshgrid(np.linspace(0, 360), np.linspace(-80, 80))
zs = ys**2
ax = plt.axes(projection=ccrs.Orthographic())
ax.contour(xs, ys, zs, transform=ccrs.PlateCarree())
# Force a draw, which is a smoke test to make sure contouring
# doesn't raise with an Orthographic projection
# GH issue 1673
plt.draw()
@pytest.mark.parametrize('func', ['contour', 'contourf'])
def test_contourf_transform_first(func):
"""Test the fast-path option for filled contours."""
# Gridded data that needs to be wrapped
x = np.arange(360)
y = np.arange(-25, 26)
xx, yy = np.meshgrid(x, y)
z = xx + yy**2
ax = plt.axes(projection=ccrs.PlateCarree())
test_func = getattr(ax, func)
# Can't handle just Z input with the transform_first
with pytest.raises(ValueError,
match="The X and Y arguments must be provided"):
test_func(z, transform=ccrs.PlateCarree(),
transform_first=True)
# X and Y must also be 2-dimensional
with pytest.raises(ValueError,
match="The X and Y arguments must be gridded"):
test_func(x, y, z, transform=ccrs.PlateCarree(),
transform_first=True)
# When calculating the contour in projection-space the extent
# will now be the extent of the transformed points (-179, 180, -25, 25)
test_func(xx, yy, z, transform=ccrs.PlateCarree(),
transform_first=True)
assert_array_almost_equal(ax.get_extent(), (-179, 180, -25, 25))
# The extent without the transform_first should be all the way out to -180
test_func(xx, yy, z, transform=ccrs.PlateCarree(),
transform_first=False)
assert_array_almost_equal(ax.get_extent(), (-180, 180, -25, 25))
|