1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
|
# Copyright Crown and Cartopy Contributors
#
# This file is part of Cartopy and is released under the BSD 3-clause license.
# See LICENSE in the root of the repository for full licensing details.
import matplotlib.pyplot as plt
import pytest
import cartopy.crs as ccrs
from cartopy.mpl import _MPL_38
from cartopy.tests.conftest import _HAS_PYKDTREE_OR_SCIPY
if not _HAS_PYKDTREE_OR_SCIPY:
pytest.skip('pykdtree or scipy is required', allow_module_level=True)
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='global_map.png')
def test_global_map():
fig = plt.figure(figsize=(10, 5))
ax = fig.add_subplot(1, 1, 1, projection=ccrs.Robinson())
# make the map global rather than have it zoom in to
# the extents of any plotted data
ax.set_global()
ax.stock_img()
ax.coastlines()
ax.plot(-0.08, 51.53, 'o', transform=ccrs.PlateCarree())
ax.plot([-0.08, 132], [51.53, 43.17], transform=ccrs.PlateCarree())
ax.plot([-0.08, 132], [51.53, 43.17], transform=ccrs.Geodetic())
return fig
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(
filename='contour_label.png', tolerance=3.9 if _MPL_38 else 0.5)
def test_contour_label():
from cartopy.tests.mpl.test_caching import sample_data
fig = plt.figure()
# Setup a global EckertIII map with faint coastlines.
ax = fig.add_subplot(1, 1, 1, projection=ccrs.EckertIII())
ax.set_global()
ax.coastlines('110m', alpha=0.1)
# Use the waves example to provide some sample data, but make it
# more dependent on y for more interesting contours.
x, y, z = sample_data((20, 40))
z = z * -1.5 * y
# Add colourful filled contours.
filled_c = ax.contourf(x, y, z, transform=ccrs.PlateCarree())
# And black line contours.
line_c = ax.contour(x, y, z, levels=filled_c.levels,
colors=['black'],
transform=ccrs.PlateCarree())
# Uncomment to make the line contours invisible.
# plt.setp(line_c.collections, visible=False)
# Add a colorbar for the filled contour.
fig.colorbar(filled_c, orientation='horizontal')
# Use the line contours to place contour labels.
ax.clabel(
line_c, # Typically best results when labelling line contours.
colors=['black'],
manual=False, # Automatic placement vs manual placement.
inline=True, # Cut the line where the label will be placed.
fmt=' {:.0f} '.format, # Labes as integers, with some extra space.
)
return fig
|