File: test_examples.py

package info (click to toggle)
python-cartopy 0.25.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 13,152 kB
  • sloc: python: 16,526; makefile: 159; javascript: 66
file content (78 lines) | stat: -rw-r--r-- 2,546 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# Copyright Crown and Cartopy Contributors
#
# This file is part of Cartopy and is released under the BSD 3-clause license.
# See LICENSE in the root of the repository for full licensing details.

import matplotlib.pyplot as plt
import pytest

import cartopy.crs as ccrs
from cartopy.mpl import _MPL_38
from cartopy.tests.conftest import _HAS_PYKDTREE_OR_SCIPY


if not _HAS_PYKDTREE_OR_SCIPY:
    pytest.skip('pykdtree or scipy is required', allow_module_level=True)


@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='global_map.png')
def test_global_map():
    fig = plt.figure(figsize=(10, 5))
    ax = fig.add_subplot(1, 1, 1, projection=ccrs.Robinson())

    # make the map global rather than have it zoom in to
    # the extents of any plotted data
    ax.set_global()

    ax.stock_img()
    ax.coastlines()

    ax.plot(-0.08, 51.53, 'o', transform=ccrs.PlateCarree())
    ax.plot([-0.08, 132], [51.53, 43.17], transform=ccrs.PlateCarree())
    ax.plot([-0.08, 132], [51.53, 43.17], transform=ccrs.Geodetic())

    return fig


@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(
    filename='contour_label.png', tolerance=3.9 if _MPL_38 else 0.5)
def test_contour_label():
    from cartopy.tests.mpl.test_caching import sample_data
    fig = plt.figure()

    # Setup a global EckertIII map with faint coastlines.
    ax = fig.add_subplot(1, 1, 1, projection=ccrs.EckertIII())
    ax.set_global()
    ax.coastlines('110m', alpha=0.1)

    # Use the waves example to provide some sample data, but make it
    # more dependent on y for more interesting contours.
    x, y, z = sample_data((20, 40))
    z = z * -1.5 * y

    # Add colourful filled contours.
    filled_c = ax.contourf(x, y, z, transform=ccrs.PlateCarree())

    # And black line contours.
    line_c = ax.contour(x, y, z, levels=filled_c.levels,
                        colors=['black'],
                        transform=ccrs.PlateCarree())

    # Uncomment to make the line contours invisible.
    # plt.setp(line_c.collections, visible=False)

    # Add a colorbar for the filled contour.
    fig.colorbar(filled_c, orientation='horizontal')

    # Use the line contours to place contour labels.
    ax.clabel(
        line_c,  # Typically best results when labelling line contours.
        colors=['black'],
        manual=False,  # Automatic placement vs manual placement.
        inline=True,  # Cut the line where the label will be placed.
        fmt=' {:.0f} '.format,  # Labes as integers, with some extra space.
    )

    return fig