1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
# Copyright Crown and Cartopy Contributors
#
# This file is part of Cartopy and is released under the BSD 3-clause license.
# See LICENSE in the root of the repository for full licensing details.
import types
import matplotlib.colors as colors
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import pytest
import shapely.geometry as sgeom
from cartopy import config
import cartopy.crs as ccrs
import cartopy.io.img_tiles as cimgt
from cartopy.tests.conftest import _HAS_PYKDTREE_OR_SCIPY
import cartopy.tests.test_img_tiles as ctest_tiles
if not _HAS_PYKDTREE_OR_SCIPY:
pytest.skip('pykdtree or scipy is required', allow_module_level=True)
NATURAL_EARTH_IMG = (config["repo_data_dir"] / 'raster' / 'natural_earth'
/ '50-natural-earth-1-downsampled.png')
REGIONAL_IMG = (config['repo_data_dir'] / 'raster' / 'sample'
/ 'Miriam.A2012270.2050.2km.jpg')
# We have an exceptionally large tolerance for the web_tiles test.
# The basemap changes on a regular basis (for seasons) and we really only
# care that it is putting images onto the map which are roughly correct.
@pytest.mark.natural_earth
@pytest.mark.network
@pytest.mark.mpl_image_compare(filename='web_tiles.png', tolerance=5.91)
def test_web_tiles():
extent = [-15, 0.1, 50, 60]
target_domain = sgeom.Polygon([[extent[0], extent[1]],
[extent[2], extent[1]],
[extent[2], extent[3]],
[extent[0], extent[3]],
[extent[0], extent[1]]])
map_prj = cimgt.GoogleTiles().crs
fig = plt.figure()
ax = fig.add_subplot(2, 2, 1, projection=map_prj)
gt = cimgt.GoogleTiles()
gt._image_url = types.MethodType(ctest_tiles.GOOGLE_IMAGE_URL_REPLACEMENT,
gt)
img, extent, origin = gt.image_for_domain(target_domain, 1)
ax.imshow(np.array(img), extent=extent, transform=gt.crs,
interpolation='bilinear', origin=origin)
ax.coastlines(color='white')
ax = fig.add_subplot(2, 2, 2, projection=map_prj)
qt = cimgt.QuadtreeTiles()
img, extent, origin = qt.image_for_domain(target_domain, 1)
ax.imshow(np.array(img), extent=extent, transform=qt.crs,
interpolation='bilinear', origin=origin)
ax.coastlines(color='white')
ax = fig.add_subplot(2, 2, 3, projection=map_prj)
osm = cimgt.OSM()
img, extent, origin = osm.image_for_domain(target_domain, 1)
ax.imshow(np.array(img), extent=extent, transform=osm.crs,
interpolation='bilinear', origin=origin)
ax.coastlines()
return fig
@pytest.mark.natural_earth
@pytest.mark.network
@pytest.mark.mpl_image_compare(filename='image_merge.png', tolerance=0.03)
def test_image_merge():
# tests the basic image merging functionality
tiles = []
for i in range(1, 4):
for j in range(0, 3):
tiles.append((i, j, 2))
gt = cimgt.GoogleTiles()
gt._image_url = types.MethodType(ctest_tiles.GOOGLE_IMAGE_URL_REPLACEMENT,
gt)
images_to_merge = []
for tile in tiles:
img, extent, origin = gt.get_image(tile)
img = np.array(img)
x = np.linspace(extent[0], extent[1], img.shape[1], endpoint=False)
y = np.linspace(extent[2], extent[3], img.shape[0], endpoint=False)
images_to_merge.append([img, x, y, origin])
img, extent, origin = cimgt._merge_tiles(images_to_merge)
ax = plt.axes(projection=gt.crs)
ax.set_global()
ax.coastlines()
ax.imshow(img, origin=origin, extent=extent, alpha=0.5)
return ax.figure
@pytest.mark.mpl_image_compare(filename='imshow_natural_earth_ortho.png')
def test_imshow():
source_proj = ccrs.PlateCarree()
img = plt.imread(NATURAL_EARTH_IMG)
# Convert the image to a byte array, rather than float, which is the
# form that JPG images would be loaded with imread.
img = (img * 255).astype('uint8')
ax = plt.axes(projection=ccrs.Orthographic())
ax.imshow(img, transform=source_proj,
extent=[-180, 180, -90, 90])
return ax.figure
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='imshow_regional_projected.png',
tolerance=1.97)
def test_imshow_projected():
source_proj = ccrs.PlateCarree()
img_extent = (-120.67660000000001, -106.32104523100001,
13.2301484511245, 30.766899999999502)
img = plt.imread(REGIONAL_IMG)
ax = plt.axes(projection=ccrs.LambertConformal())
ax.set_extent(img_extent, crs=source_proj)
ax.coastlines(resolution='50m')
ax.imshow(img, extent=img_extent, transform=source_proj)
return ax.figure
def test_imshow_wrapping():
ax = plt.axes(projection=ccrs.PlateCarree(central_longitude=0.0))
# Set the extent outside of the current projection domain to ensure
# it is wrapped back to the (-180, 180) extent of the projection
ax.imshow(np.random.random((10, 10)), transform=ccrs.PlateCarree(),
extent=(0, 360, -90, 90))
assert ax.get_xlim() == (-180, 180)
def test_imshow_arguments():
"""Smoke test for imshow argument passing in the fast-path"""
ax = plt.axes(projection=ccrs.PlateCarree())
# Set the regrid_shape parameter to ensure it isn't passed to Axes.imshow()
# in the fast-path call to super()
with pytest.warns(UserWarning, match="ignoring regrid_shape"):
ax.imshow(np.random.random((10, 10)), transform=ccrs.PlateCarree(),
extent=(-180, 180, -90, 90), regrid_shape=500)
def test_imshow_rgba():
# tests that the alpha of a RGBA array passed to imshow is set to 0
# instead of masked
z = np.full((100, 100), 0.5)
cmap = plt.get_cmap()
norm = colors.Normalize(vmin=0, vmax=1)
z1 = cmap(norm(z))
plt_crs = ccrs.LambertAzimuthalEqualArea()
latlon_crs = ccrs.PlateCarree()
ax = plt.axes(projection=plt_crs)
ax.set_extent([-30, -20, 60, 70], crs=latlon_crs)
img = ax.imshow(z1, extent=[-26, -24, 64, 66], transform=latlon_crs)
assert sum(img.get_array().data[:, 0, 3]) == 0
def test_imshow_rgba_alpha():
# test that alpha channel from RGBA is not skipped
dy, dx = (3, 4)
ax = plt.axes(projection=ccrs.Orthographic(-120, 45))
# Create RGBA Image with random data and linspace alpha
RGBA = np.linspace(0, 255 * 31, dx * dy * 4,
dtype=np.uint8).reshape((dy, dx, 4))
alpha = np.array([0, 85, 170, 255])
RGBA[:, :, 3] = alpha
img = ax.imshow(RGBA, transform=ccrs.PlateCarree())
assert np.all(np.unique(img.get_array().data[:, :, 3]) == alpha)
def test_imshow_rgb():
# tests that the alpha of a RGB array passed to imshow is set to 0
# instead of masked
z = np.full((100, 100, 3), 0.5)
plt_crs = ccrs.LambertAzimuthalEqualArea()
latlon_crs = ccrs.PlateCarree()
ax = plt.axes(projection=plt_crs)
ax.set_extent([-30, -20, 60, 70], crs=latlon_crs)
img = ax.imshow(z, extent=[-26, -24, 64, 66], transform=latlon_crs)
assert sum(img.get_array().data[:, 0, 3]) == 0
@pytest.mark.mpl_image_compare(filename='imshow_natural_earth_ortho.png')
def test_stock_img():
ax = plt.axes(projection=ccrs.Orthographic())
ax.stock_img()
return ax.figure
@pytest.mark.mpl_image_compare(filename='imshow_natural_earth_ortho.png')
def test_pil_Image():
img = Image.open(NATURAL_EARTH_IMG)
source_proj = ccrs.PlateCarree()
ax = plt.axes(projection=ccrs.Orthographic())
ax.imshow(img, transform=source_proj,
extent=[-180, 180, -90, 90])
return ax.figure
@pytest.mark.mpl_image_compare(filename='imshow_natural_earth_ortho.png')
def test_background_img():
ax = plt.axes(projection=ccrs.Orthographic())
ax.background_img(name='ne_shaded', resolution='low')
return ax.figure
def test_alpha_2d_warp():
# tests that both image and alpha arrays (if alpha is 2D) are warped
plt_crs = ccrs.Geostationary(central_longitude=-155.)
fig = plt.figure(figsize=(5, 5))
ax = fig.add_subplot(1, 1, 1, projection=plt_crs)
latlon_crs = ccrs.PlateCarree()
coords = [-162., -148., 17.5, 23.]
ax.set_extent(coords, crs=latlon_crs)
fake_data = np.zeros([100, 100])
fake_alphas = np.zeros(fake_data.shape)
image = ax.imshow(fake_data, extent=coords, transform=latlon_crs,
alpha=fake_alphas)
image_data = image.get_array()
image_alpha = image.get_alpha()
assert image_data.shape == image_alpha.shape
|