1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
|
# Copyright Crown and Cartopy Contributors
#
# This file is part of Cartopy and is released under the BSD 3-clause license.
# See LICENSE in the root of the repository for full licensing details.
from functools import reduce
import operator
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pytest
from cartopy import config
import cartopy.crs as ccrs
from cartopy.tests.conftest import _HAS_PYKDTREE_OR_SCIPY
if not _HAS_PYKDTREE_OR_SCIPY:
pytest.skip('pykdtree or scipy is required', allow_module_level=True)
import cartopy.img_transform as im_trans
class TestRegrid:
def test_array_dims(self):
# Source data
source_nx = 100
source_ny = 100
source_x = np.linspace(-180.0,
180.0,
source_nx).astype(np.float64)
source_y = np.linspace(-90, 90.0, source_ny).astype(np.float64)
source_x, source_y = np.meshgrid(source_x, source_y)
data = np.arange(source_nx * source_ny,
dtype=np.int32).reshape(source_ny, source_nx)
source_cs = ccrs.Geodetic()
# Target grid
target_nx = 23
target_ny = 45
target_proj = ccrs.PlateCarree()
target_x, target_y, extent = im_trans.mesh_projection(target_proj,
target_nx,
target_ny)
# Perform regrid
new_array = im_trans.regrid(data, source_x, source_y, source_cs,
target_proj, target_x, target_y)
# Check dimensions of return array
assert new_array.shape == target_x.shape
assert new_array.shape == target_y.shape
assert new_array.shape == (target_ny, target_nx)
def test_different_dims(self):
# Source data
source_nx = 100
source_ny = 100
source_x = np.linspace(-180.0, 180.0,
source_nx).astype(np.float64)
source_y = np.linspace(-90, 90.0,
source_ny).astype(np.float64)
source_x, source_y = np.meshgrid(source_x, source_y)
data = np.arange(source_nx * source_ny,
dtype=np.int32).reshape(source_ny, source_nx)
source_cs = ccrs.Geodetic()
# Target grids (different shapes)
target_x_shape = (23, 45)
target_y_shape = (23, 44)
target_x = np.arange(reduce(operator.mul, target_x_shape),
dtype=np.float64).reshape(target_x_shape)
target_y = np.arange(reduce(operator.mul, target_y_shape),
dtype=np.float64).reshape(target_y_shape)
target_proj = ccrs.PlateCarree()
# Attempt regrid
with pytest.raises(ValueError):
im_trans.regrid(data, source_x, source_y, source_cs,
target_proj, target_x, target_y)
# Bug in latest Matplotlib that we don't consider correct.
@pytest.mark.natural_earth
@pytest.mark.mpl_image_compare(filename='regrid_image.png', tolerance=5.55)
def test_regrid_image():
# Source data
fname = (config["repo_data_dir"] / 'raster' / 'natural_earth'
/ '50-natural-earth-1-downsampled.png')
nx = 720
ny = 360
source_proj = ccrs.PlateCarree()
source_x, source_y, _ = im_trans.mesh_projection(source_proj, nx, ny)
data = plt.imread(fname)
# Flip vertically to match source_x/source_y orientation
data = data[::-1]
# Target grid
target_nx = 300
target_ny = 300
target_proj = ccrs.InterruptedGoodeHomolosine(emphasis='land')
target_x, target_y, target_extent = im_trans.mesh_projection(target_proj,
target_nx,
target_ny)
# Perform regrid
new_array = im_trans.regrid(data, source_x, source_y, source_proj,
target_proj, target_x, target_y)
# Plot
fig = plt.figure(figsize=(10, 10))
gs = mpl.gridspec.GridSpec(nrows=4, ncols=1,
hspace=1.5, wspace=0.5)
# Set up axes and title
ax = fig.add_subplot(gs[0], projection=target_proj)
ax.imshow(new_array, origin='lower', extent=target_extent)
ax.coastlines()
# Plot each color slice (tests masking)
cmaps = {'red': 'Reds', 'green': 'Greens', 'blue': 'Blues'}
for i, color in enumerate(['red', 'green', 'blue']):
ax = fig.add_subplot(gs[i + 1], projection=target_proj)
ax.imshow(new_array[:, :, i], extent=target_extent, origin='lower',
cmap=cmaps[color])
ax.coastlines()
# Tighten up layout
gs.tight_layout(fig)
return fig
|