File: test_geodesic.py

package info (click to toggle)
python-cartopy 0.25.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 13,152 kB
  • sloc: python: 16,526; makefile: 159; javascript: 66
file content (167 lines) | stat: -rw-r--r-- 6,862 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Copyright Crown and Cartopy Contributors
#
# This file is part of Cartopy and is released under the BSD 3-clause license.
# See LICENSE in the root of the repository for full licensing details.

import numpy as np
from numpy.testing import assert_almost_equal, assert_array_almost_equal
import pytest
import shapely.geometry as sgeom

from cartopy import geodesic


class TestGeodesic:
    def setup_class(self):
        """
        Data sampled from the GeographicLib Test Data for Geodesics at:
        https://geographiclib.sourceforge.io/html/geodesic.html#testgeod

        """
        self.geod = geodesic.Geodesic()

        # Fill a 10 by 7 numpy array with starting lons, lats, azimuths; ending
        # lons, lats and azimuths and distances to travel.

        data = np.array(
            [
                (0.0000000000, 36.5300423550, 176.1258751622, 5.7623446947,
                 -48.1642707791, 175.3343083163, 9398502.0434687007),
                (0.0000000000, 20.8766024619, 6.9012827094, 163.9792202999,
                 64.2764863397, 165.0440144913, 10462971.2273696996),
                (0.0000000000, 59.7405712203, 80.9569174535, 80.1969954660,
                 30.9857449391, 144.4488137288, 6549489.1863671001),
                (0.0000000000, 38.6508883588, 18.3455177945, 23.5931524958,
                 66.3457305181, 37.7145989984, 3425212.4767990001),
                (0.0000000000, 23.2214345509, 165.5720618611, 148.3625110902,
                 -68.8453788967, 39.2692310682, 14506511.2971898001),
                (0.0000000000, 31.2989275984, 155.7723493796, 93.8764112107,
                 -69.2776346668, 98.5250397385, 13370814.5013951007),
                (0.0000000000, 49.6823298563, 1.0175398481, 5.3554086646,
                 83.8681965431, 6.1667605618, 3815028.2543704999),
                (0.0000000000, 32.7651878215, 98.6494285944, 70.3527194957,
                 2.4777491770, 123.5999412794, 8030520.7178932996),
                (0.0000000000, 46.3648067071, 94.9148631993, 56.5676529172,
                 25.2581951337, 130.4405565458, 5485075.9286326999),
                (0.0000000000, 33.7321188396, 147.9041907517, 33.1346935645,
                 -26.3211288531, 150.4502346224, 7512675.5414637001),
            ],
            dtype=[('start_lon', np.float64),
                   ('start_lat', np.float64),
                   ('start_azi', np.float64),
                   ('end_lon', np.float64),
                   ('end_lat', np.float64),
                   ('end_azi', np.float64),
                   ('dist', np.float64)])

        self.data = data.view(np.recarray)

        self.start_pts = np.column_stack(
            [self.data.start_lon, self.data.start_lat])
        self.end_pts = np.column_stack(
            [self.data.end_lon, self.data.end_lat])
        self.direct_solution = np.column_stack(
            [self.data.end_lon, self.data.end_lat, self.data.end_azi])
        self.inverse_solution = np.column_stack(
            [self.data.dist, self.data.start_azi, self.data.end_azi])

    def test_direct(self):
        geod_dir = self.geod.direct(self.start_pts, self.data.start_azi,
                                    self.data.dist)
        assert_array_almost_equal(geod_dir, self.direct_solution, decimal=5)

    def test_direct_broadcast(self):
        repeat_dists = np.repeat(self.data.dist[0:1], 10, axis=0)
        repeat_start_pts = np.repeat(self.start_pts[0:1, :], 10, axis=0)
        repeat_results = np.repeat(self.direct_solution[0:1, :], 10, axis=0)

        geod_dir1 = self.geod.direct(self.start_pts[0], self.data.start_azi[0],
                                     repeat_dists)
        geod_dir2 = self.geod.direct(repeat_start_pts, self.data.start_azi[0],
                                     self.data.dist[0])

        assert_array_almost_equal(geod_dir1, repeat_results, decimal=5)
        assert_array_almost_equal(geod_dir2, repeat_results, decimal=5)

    def test_inverse(self):
        geod_inv = self.geod.inverse(self.start_pts, self.end_pts)
        assert_array_almost_equal(geod_inv, self.inverse_solution, decimal=5)

    def test_inverse_broadcast(self):
        repeat_start_pts = np.repeat(self.start_pts[0:1, :], 10, axis=0)
        repeat_end_pts = np.repeat(self.end_pts[0:1, :], 10, axis=0)
        repeat_results = np.repeat(self.inverse_solution[0:1, :], 10, axis=0)

        geod_inv1 = self.geod.inverse(self.start_pts[0], repeat_end_pts)
        geod_inv2 = self.geod.inverse(repeat_start_pts, self.end_pts[0])

        assert_array_almost_equal(geod_inv1, repeat_results, decimal=5)
        assert_array_almost_equal(geod_inv2, repeat_results, decimal=5)

    def test_circle(self):
        geod_circle = self.geod.circle(40, 50, 500000, n_samples=3)
        assert_almost_equal(geod_circle,
                            np.array([[40., 54.49349757],
                                      [34.23766162, 47.60355349],
                                      [45.76233838, 47.60355349]]), decimal=5)

    def test_str(self):
        expected = '<Geodesic: radius=6378137.000, flattening=1/298.257>'
        assert expected == str(self.geod)

    def test_inverse_shape(self):
        with pytest.raises(ValueError):
            self.geod.inverse([[0, 1, 2], [0, 1, 2]], [2, 3])


lhr = [-0.5543, 51.4700]
jfk = [-73.7781, 40.6413]
tul = [144.8410, -37.6690]

lhr_to_jfk = 5548298
jfk_to_tul = 16695485
tul_to_lhr = 16909514


def test_geometry_length_ndarray():
    geod = geodesic.Geodesic()
    geom = np.array([lhr, jfk, lhr])
    expected = pytest.approx(lhr_to_jfk * 2, abs=1)
    assert geod.geometry_length(geom) == expected


def test_geometry_length_linestring():
    geod = geodesic.Geodesic()
    geom = sgeom.LineString(np.array([lhr, jfk, lhr]))
    expected = pytest.approx(lhr_to_jfk * 2, abs=1)
    assert geod.geometry_length(geom) == expected


def test_geometry_length_multilinestring():
    geod = geodesic.Geodesic()
    geom = sgeom.MultiLineString(
        [sgeom.LineString(np.array([lhr, jfk])),
         sgeom.LineString(np.array([tul, jfk]))])
    expected = pytest.approx(lhr_to_jfk + jfk_to_tul, abs=1)
    assert geod.geometry_length(geom) == expected


def test_geometry_length_linearring():
    geod = geodesic.Geodesic()
    geom = sgeom.LinearRing(np.array([lhr, jfk, tul]))
    expected = pytest.approx(lhr_to_jfk + jfk_to_tul + tul_to_lhr, abs=1)
    assert geod.geometry_length(geom) == expected


def test_geometry_length_polygon():
    geod = geodesic.Geodesic()
    geom = sgeom.Polygon(np.array([lhr, jfk, tul]))
    expected = pytest.approx(lhr_to_jfk + jfk_to_tul + tul_to_lhr, abs=1)
    assert geod.geometry_length(geom) == expected


def test_geometry_length_point():
    geod = geodesic.Geodesic()
    geom = sgeom.Point(lhr)
    with pytest.raises(TypeError):
        geod.geometry_length(geom)