1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
# Copyright Crown and Cartopy Contributors
#
# This file is part of Cartopy and is released under the BSD 3-clause license.
# See LICENSE in the root of the repository for full licensing details.
import numpy as np
import pytest
import shapely.geometry as sgeom
import cartopy.crs as ccrs
class TestBoundary:
def test_cuts(self):
# Check that fragments do not start or end with one of the
# original ... ?
linear_ring = sgeom.LinearRing([(-10, 30), (10, 60), (10, 50)])
projection = ccrs.Robinson(170.5)
*rings, multi_line_string = projection.project_geometry(linear_ring).geoms
# The original ring should have been split into multiple pieces.
assert len(multi_line_string.geoms) > 1
assert not rings
def assert_close_to_boundary(xy):
# Are we close to the boundary, which we are considering within
# a fraction of the x domain limits
limit = (projection.x_limits[1] - projection.x_limits[0]) / 1e4
assert sgeom.Point(*xy).distance(projection.boundary) < limit, \
'Bad topology near boundary'
# Each line resulting from the split should be close to the boundary.
# (This is important when considering polygon rings which need to be
# attached to the boundary.)
for line_string in multi_line_string.geoms:
coords = list(line_string.coords)
assert len(coords) >= 2
assert_close_to_boundary(coords[0])
assert_close_to_boundary(coords[-1])
def test_out_of_bounds(self):
# Check that a ring that is completely out of the map boundary
# produces an empty result.
# XXX Check efficiency?
projection = ccrs.TransverseMercator(central_longitude=0, approx=True)
rings = [
# All valid
([(86, 1), (86, -1), (88, -1), (88, 1)], -1),
# One NaN
([(86, 1), (86, -1), (130, -1), (88, 1)], 1),
# A NaN segment
([(86, 1), (86, -1), (130, -1), (130, 1)], 1),
# All NaN
([(120, 1), (120, -1), (130, -1), (130, 1)], 0),
]
# Try all four combinations of valid/NaN vs valid/NaN.
for coords, expected_n_lines in rings:
linear_ring = sgeom.LinearRing(coords)
*rings, mlinestr = projection.project_geometry(linear_ring).geoms
if expected_n_lines == -1:
assert rings
assert not mlinestr
else:
assert len(mlinestr.geoms) == expected_n_lines
if expected_n_lines == 0:
assert mlinestr.is_empty
class TestMisc:
def test_small(self):
# What happens when a small (i.e. < threshold) feature crosses the
# boundary?
projection = ccrs.Mercator()
linear_ring = sgeom.LinearRing([
(-179.9173693847652942, -16.5017831356493616),
(-180.0000000000000000, -16.0671326636424396),
(-179.7933201090486079, -16.0208822567412312),
])
*rings, multi_line_string = projection.project_geometry(linear_ring).geoms
# There should be one, and only one, returned ring.
assert isinstance(multi_line_string, sgeom.MultiLineString)
assert len(multi_line_string.geoms) == 0
assert len(rings) == 1
# from cartopy.tests.mpl import show
# show(projection, multi_line_string)
def test_three_points(self):
# The following LinearRing when projected from PlateCarree() to
# PlateCarree(180.0) results in three points all in close proximity.
# If an attempt is made to form a LinearRing from the three points
# by combining the first and last an exception will be raised.
# Check that this object can be projected without error.
coords = [(0.0, -45.0),
(0.0, -44.99974961593933),
(0.000727869825138, -45.0),
(0.0, -45.000105851567454),
(0.0, -45.0)]
linear_ring = sgeom.LinearRing(coords)
src_proj = ccrs.PlateCarree()
target_proj = ccrs.PlateCarree(180.0)
try:
target_proj.project_geometry(linear_ring, src_proj)
except ValueError:
pytest.fail("Failed to project LinearRing.")
def test_stitch(self):
# The following LinearRing wanders in/out of the map domain
# but importantly the "vertical" lines at 0'E and 360'E are both
# chopped by the map boundary. This results in their ends being
# *very* close to each other and confusion over which occurs
# first when navigating around the boundary.
# Check that these ends are stitched together to avoid the
# boundary ordering ambiguity.
# NB. This kind of polygon often occurs with MPL's contouring.
coords = [(0.0, -70.70499926182919),
(0.0, -71.25),
(0.0, -72.5),
(0.0, -73.49076371657017),
(360.0, -73.49076371657017),
(360.0, -72.5),
(360.0, -71.25),
(360.0, -70.70499926182919),
(350, -73),
(10, -73)]
src_proj = ccrs.PlateCarree()
target_proj = ccrs.Stereographic(80)
linear_ring = sgeom.LinearRing(coords)
*rings, mlinestr = target_proj.project_geometry(linear_ring, src_proj).geoms
assert len(mlinestr.geoms) == 1
assert len(rings) == 0
# Check the stitch works in either direction.
linear_ring = sgeom.LinearRing(coords[::-1])
*rings, mlinestr = target_proj.project_geometry(linear_ring, src_proj).geoms
assert len(mlinestr.geoms) == 1
assert len(rings) == 0
def test_at_boundary(self):
# Check that a polygon is split and recombined correctly
# as a result of being on the boundary, determined by tolerance.
exterior = np.array(
[[177.5, -79.912],
[178.333, -79.946],
[181.666, -83.494],
[180.833, -83.570],
[180., -83.620],
[178.438, -83.333],
[178.333, -83.312],
[177.956, -83.888],
[180., -84.086],
[180.833, -84.318],
[183., -86.],
[183., -78.],
[177.5, -79.912]])
tring = sgeom.LinearRing(exterior)
tcrs = ccrs.PlateCarree()
scrs = ccrs.PlateCarree()
*rings, mlinestr = tcrs._project_linear_ring(tring, scrs).geoms
# Number of linearstrings
assert len(mlinestr.geoms) == 4
assert not rings
# Test area of smallest Polygon that contains all the points in the
# geometry.
assert round(abs(mlinestr.convex_hull.area - 2347.7562), 4) == 0
|