File: test_vector_transform.py

package info (click to toggle)
python-cartopy 0.25.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 13,152 kB
  • sloc: python: 16,526; makefile: 159; javascript: 66
file content (231 lines) | stat: -rw-r--r-- 10,871 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# Copyright Crown and Cartopy Contributors
#
# This file is part of Cartopy and is released under the BSD 3-clause license.
# See LICENSE in the root of the repository for full licensing details.

import numpy as np
from numpy.testing import assert_array_almost_equal, assert_array_equal
import pytest


try:
    import scipy  # noqa: F401
except ImportError:
    pytest.skip("scipy is required for vector transforms", allow_module_level=True)


import cartopy.crs as ccrs
import cartopy.vector_transform as vec_trans


def _sample_plate_carree_coordinates():
    x = np.array([-10, 0, 10, -9, 0, 9])
    y = np.array([10, 10, 10, 5, 5, 5])
    return x, y


def _sample_plate_carree_scalar_field():
    return np.array([2, 4, 2, 1.2, 3, 1.2])


def _sample_plate_carree_vector_field():
    u = np.array([2, 4, 2, 1.2, 3, 1.2])
    v = np.array([5.5, 4, 5.5, 1.2, .3, 1.2])
    return u, v


class Test_interpolate_to_grid:

    @classmethod
    def setup_class(cls):
        cls.x, cls.y = _sample_plate_carree_coordinates()
        cls.s = _sample_plate_carree_scalar_field()

    def test_data_extent(self):
        # Interpolation to a grid with extents of the input data.
        expected_x_grid = np.array([[-10., -5., 0., 5., 10.],
                                    [-10., -5., 0., 5., 10.],
                                    [-10., -5., 0., 5., 10.]])
        expected_y_grid = np.array([[5., 5., 5., 5., 5.],
                                    [7.5, 7.5, 7.5, 7.5, 7.5],
                                    [10., 10., 10., 10., 10]])
        expected_s_grid = np.array([[np.nan, 2., 3., 2., np.nan],
                                    [np.nan, 2.5, 3.5, 2.5, np.nan],
                                    [2., 3., 4., 3., 2.]])

        x_grid, y_grid, s_grid = vec_trans._interpolate_to_grid(
            5, 3, self.x, self.y, self.s)

        assert_array_equal(x_grid, expected_x_grid)
        assert_array_equal(y_grid, expected_y_grid)
        assert_array_almost_equal(s_grid, expected_s_grid)

    def test_explicit_extent(self):
        # Interpolation to a grid with explicit extents.
        expected_x_grid = np.array([[-5., 0., 5., 10.],
                                    [-5., 0., 5., 10.]])
        expected_y_grid = np.array([[7.5, 7.5, 7.5, 7.5],
                                    [10., 10., 10., 10]])
        expected_s_grid = np.array([[2.5, 3.5, 2.5, np.nan],
                                    [3., 4., 3., 2.]])

        extent = (-5, 10, 7.5, 10)
        x_grid, y_grid, s_grid = vec_trans._interpolate_to_grid(
            4, 2, self.x, self.y, self.s, target_extent=extent)

        assert_array_equal(x_grid, expected_x_grid)
        assert_array_equal(y_grid, expected_y_grid)
        assert_array_almost_equal(s_grid, expected_s_grid)

    def test_multiple_fields(self):
        # Interpolation of multiple fields in one go.
        expected_x_grid = np.array([[-10., -5., 0., 5., 10.],
                                    [-10., -5., 0., 5., 10.],
                                    [-10., -5., 0., 5., 10.]])
        expected_y_grid = np.array([[5., 5., 5., 5., 5.],
                                    [7.5, 7.5, 7.5, 7.5, 7.5],
                                    [10., 10., 10., 10., 10]])
        expected_s_grid = np.array([[np.nan, 2., 3., 2., np.nan],
                                    [np.nan, 2.5, 3.5, 2.5, np.nan],
                                    [2., 3., 4., 3., 2.]])

        x_grid, y_grid, s_grid1, s_grid2, s_grid3 = \
            vec_trans._interpolate_to_grid(5, 3, self.x, self.y,
                                           self.s, self.s, self.s)

        assert_array_equal(x_grid, expected_x_grid)
        assert_array_equal(y_grid, expected_y_grid)
        assert_array_almost_equal(s_grid1, expected_s_grid)
        assert_array_almost_equal(s_grid2, expected_s_grid)
        assert_array_almost_equal(s_grid3, expected_s_grid)


class Test_vector_scalar_to_grid:

    @classmethod
    def setup_class(cls):
        cls.x, cls.y = _sample_plate_carree_coordinates()
        cls.u, cls.v = _sample_plate_carree_vector_field()
        cls.s = _sample_plate_carree_scalar_field()

    def test_no_transform(self):
        # Transform and regrid vector (with no projection transform).
        expected_x_grid = np.array([[-10., -5., 0., 5., 10.],
                                    [-10., -5., 0., 5., 10.],
                                    [-10., -5., 0., 5., 10.]])
        expected_y_grid = np.array([[5., 5., 5., 5., 5.],
                                    [7.5, 7.5, 7.5, 7.5, 7.5],
                                    [10., 10., 10., 10., 10]])
        expected_u_grid = np.array([[np.nan, 2., 3., 2., np.nan],
                                    [np.nan, 2.5, 3.5, 2.5, np.nan],
                                    [2., 3., 4., 3., 2.]])
        expected_v_grid = np.array([[np.nan, .8, .3, .8, np.nan],
                                    [np.nan, 2.675, 2.15, 2.675, np.nan],
                                    [5.5, 4.75, 4., 4.75, 5.5]])

        src_crs = target_crs = ccrs.PlateCarree()
        x_grid, y_grid, u_grid, v_grid = vec_trans.vector_scalar_to_grid(
            src_crs, target_crs, (5, 3), self.x, self.y, self.u, self.v)

        assert_array_equal(x_grid, expected_x_grid)
        assert_array_equal(y_grid, expected_y_grid)
        assert_array_almost_equal(u_grid, expected_u_grid)
        assert_array_almost_equal(v_grid, expected_v_grid)

    def test_with_transform(self):
        # Transform and regrid vector.
        target_crs = ccrs.PlateCarree()
        src_crs = ccrs.NorthPolarStereo()

        input_coords = [src_crs.transform_point(xp, yp, target_crs)
                        for xp, yp in zip(self.x, self.y)]
        x_nps = np.array([ic[0] for ic in input_coords])
        y_nps = np.array([ic[1] for ic in input_coords])
        u_nps, v_nps = src_crs.transform_vectors(target_crs, self.x, self.y,
                                                 self.u, self.v)

        expected_x_grid = np.array([[-10., -5., 0., 5., 10.],
                                    [-10., -5., 0., 5., 10.],
                                    [-10., -5., 0., 5., 10.]])
        expected_y_grid = np.array([[5., 5., 5., 5., 5.],
                                    [7.5, 7.5, 7.5, 7.5, 7.5],
                                    [10., 10., 10., 10., 10]])
        expected_u_grid = np.array([[np.nan, np.nan, np.nan, np.nan, np.nan],
                                    [np.nan, 2.3838, 3.5025, 2.6152, np.nan],
                                    [2, 3.0043, 4, 2.9022, 2]])
        expected_v_grid = np.array([[np.nan, np.nan, np.nan, np.nan, np.nan],
                                    [np.nan, 2.6527, 2.1904, 2.4192, np.nan],
                                    [5.5, 4.6483, 4, 4.47, 5.5]])

        x_grid, y_grid, u_grid, v_grid = vec_trans.vector_scalar_to_grid(
            src_crs, target_crs, (5, 3), x_nps, y_nps, u_nps, v_nps)

        assert_array_almost_equal(x_grid, expected_x_grid)
        assert_array_almost_equal(y_grid, expected_y_grid)
        # Vector transforms are somewhat approximate, so we are more lenient
        # with the returned values since we have transformed twice.
        assert_array_almost_equal(u_grid, expected_u_grid, decimal=4)
        assert_array_almost_equal(v_grid, expected_v_grid, decimal=4)

    def test_with_scalar_field(self):
        # Transform and regrid vector (with no projection transform) with an
        # additional scalar field.
        expected_x_grid = np.array([[-10., -5., 0., 5., 10.],
                                    [-10., -5., 0., 5., 10.],
                                    [-10., -5., 0., 5., 10.]])
        expected_y_grid = np.array([[5., 5., 5., 5., 5.],
                                    [7.5, 7.5, 7.5, 7.5, 7.5],
                                    [10., 10., 10., 10., 10]])
        expected_u_grid = np.array([[np.nan, 2., 3., 2., np.nan],
                                    [np.nan, 2.5, 3.5, 2.5, np.nan],
                                    [2., 3., 4., 3., 2.]])
        expected_v_grid = np.array([[np.nan, .8, .3, .8, np.nan],
                                    [np.nan, 2.675, 2.15, 2.675, np.nan],
                                    [5.5, 4.75, 4., 4.75, 5.5]])
        expected_s_grid = np.array([[np.nan, 2., 3., 2., np.nan],
                                    [np.nan, 2.5, 3.5, 2.5, np.nan],
                                    [2., 3., 4., 3., 2.]])

        src_crs = target_crs = ccrs.PlateCarree()
        x_grid, y_grid, u_grid, v_grid, s_grid = \
            vec_trans.vector_scalar_to_grid(src_crs, target_crs, (5, 3),
                                            self.x, self.y,
                                            self.u, self.v, self.s)

        assert_array_equal(x_grid, expected_x_grid)
        assert_array_equal(y_grid, expected_y_grid)
        assert_array_almost_equal(u_grid, expected_u_grid)
        assert_array_almost_equal(v_grid, expected_v_grid)
        assert_array_almost_equal(s_grid, expected_s_grid)

    def test_with_scalar_field_non_ndarray_data(self):
        # Transform and regrid vector (with no projection transform) with an
        # additional scalar field which is not a ndarray.
        expected_x_grid = np.array([[-10., -5., 0., 5., 10.],
                                    [-10., -5., 0., 5., 10.],
                                    [-10., -5., 0., 5., 10.]])
        expected_y_grid = np.array([[5., 5., 5., 5., 5.],
                                    [7.5, 7.5, 7.5, 7.5, 7.5],
                                    [10., 10., 10., 10., 10]])
        expected_u_grid = np.array([[np.nan, 2., 3., 2., np.nan],
                                    [np.nan, 2.5, 3.5, 2.5, np.nan],
                                    [2., 3., 4., 3., 2.]])
        expected_v_grid = np.array([[np.nan, .8, .3, .8, np.nan],
                                    [np.nan, 2.675, 2.15, 2.675, np.nan],
                                    [5.5, 4.75, 4., 4.75, 5.5]])
        expected_s_grid = np.array([[np.nan, 2., 3., 2., np.nan],
                                    [np.nan, 2.5, 3.5, 2.5, np.nan],
                                    [2., 3., 4., 3., 2.]])

        src_crs = target_crs = ccrs.PlateCarree()
        x_grid, y_grid, u_grid, v_grid, s_grid = \
            vec_trans.vector_scalar_to_grid(src_crs, target_crs, (5, 3),
                                            list(self.x), list(self.y),
                                            list(self.u), list(self.v),
                                            list(self.s))

        assert_array_equal(x_grid, expected_x_grid)
        assert_array_equal(y_grid, expected_y_grid)
        assert_array_almost_equal(u_grid, expected_u_grid)
        assert_array_almost_equal(v_grid, expected_v_grid)
        assert_array_almost_equal(s_grid, expected_s_grid)