File: trace.pyx

package info (click to toggle)
python-cartopy 0.25.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 13,152 kB
  • sloc: python: 16,526; makefile: 159; javascript: 66
file content (645 lines) | stat: -rw-r--r-- 22,344 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
# Copyright Crown and Cartopy Contributors
#
# This file is part of Cartopy and is released under the BSD 3-clause license.
# See LICENSE in the root of the repository for full licensing details.
#
# cython: embedsignature=True

"""
Trace pulls together proj, GEOS and ``_crs.pyx`` to implement a function
to project a `~shapely.geometry.LinearRing` / `~shapely.geometry.LineString`.
In general, this should never be called manually, instead leaving the
processing to be done by the :class:`cartopy.crs.Projection` subclasses.
"""
from __future__ import print_function

from functools import lru_cache

cimport cython
from libc.math cimport HUGE_VAL, sqrt, isfinite, isnan
from libcpp cimport bool
from libcpp.list cimport list

cdef bool DEBUG = False

import re
import warnings

import numpy as np
import shapely
import shapely.geometry as sgeom
import shapely.prepared as sprep
from pyproj import Geod, Transformer, proj_version_str
from pyproj.exceptions import ProjError
import shapely.geometry as sgeom

import cartopy.crs as ccrs


ctypedef struct Point:
    double x
    double y

ctypedef list[Point] Line


cdef bool degenerate_line(const Line &value):
    return value.size() < 2


cdef bool close(double a, double b):
    return abs(a - b) <= (1e-8 + 1e-5 * abs(b))


@cython.final
cdef class LineAccumulator:
    cdef list[Line] lines

    def __init__(self):
        self.new_line()

    cdef void new_line(self):
        cdef Line line
        self.lines.push_back(line)

    cdef void add_point(self, const Point &point):
        self.lines.back().push_back(point)

    cdef void add_point_if_empty(self, const Point &point):
        if self.lines.back().empty():
            self.add_point(point)

    cdef object as_geom(self):
        from cython.operator cimport dereference, preincrement

        # self.lines.remove_if(degenerate_line) is not available in Cython.
        cdef list[Line].iterator it = self.lines.begin()
        while it != self.lines.end():
            if degenerate_line(dereference(it)):
                it = self.lines.erase(it)
            else:
                preincrement(it)

        cdef Point first, last
        if self.lines.size() > 1:
            first = self.lines.front().front()
            last = self.lines.back().back()
            if close(first.x, last.x) and close(first.y, last.y):
                self.lines.front().pop_front()
                self.lines.back().splice(self.lines.back().end(),
                                         self.lines.front())
                self.lines.pop_front()

        cdef Line ilines
        cdef Point ipoints
        geoms = []
        for ilines in self.lines:
            coords = [(ipoints.x, ipoints.y) for ipoints in ilines]
            geoms.append(sgeom.LineString(coords))

        geom = sgeom.MultiLineString(geoms)
        return geom

    cdef size_t size(self):
        return self.lines.size()


cdef class Interpolator:
    cdef Point start
    cdef Point end
    cdef readonly transformer
    cdef double src_scale
    cdef double dest_scale
    cdef bint to_180

    def __cinit__(self):
        self.src_scale = 1
        self.dest_scale = 1
        self.to_180 = False

    cdef void init(self, src_crs, dest_crs) except *:
        self.transformer = Transformer.from_crs(src_crs, dest_crs, always_xy=True)
        self.to_180 = (
            self.transformer.name == "noop" and
            src_crs.__class__.__name__ in ("PlateCarree", "RotatedPole")
        )

    cdef void set_line(self, const Point &start, const Point &end):
        self.start = start
        self.end = end

    cdef Point project(self, const Point &src_xy) except *:
        cdef Point dest_xy

        try:
            xx, yy = self.transformer.transform(
                src_xy.x * self.src_scale,
                src_xy.y * self.src_scale,
                errcheck=True
            )
        except ProjError as err:
            msg = str(err).lower()
            if (
                "latitude" in msg or
                "longitude" in msg or
                "outside of projection domain" in msg or
                "tolerance condition error" in msg
            ):
                xx = HUGE_VAL
                yy = HUGE_VAL
            else:
                raise

        if self.to_180 and (xx > 180 or xx < -180) and xx != HUGE_VAL:
            xx = (((xx + 180) % 360) - 180)

        dest_xy.x = xx * self.dest_scale
        dest_xy.y = yy * self.dest_scale
        return dest_xy

    cdef double[:, :] project_points(self, double[:, :] src_xy) except *:
        # Used for fallback to single point updates
        cdef Point xy
        # Make a temporary copy so we don't update the incoming memory view
        new_src_xy = np.asarray(src_xy)*self.src_scale
        try:
            xx, yy = self.transformer.transform(
                new_src_xy[:, 0],
                new_src_xy[:, 1],
                errcheck=True
            )
        except ProjError as err:
            msg = str(err).lower()
            if (
                "latitude" in msg or
                "longitude" in msg or
                "outside of projection domain" in msg or
                "tolerance condition error" in msg
            ):
                # Go back to trying to project a single point at a time
                xx = np.empty(shape=len(src_xy))
                yy = np.empty(shape=len(src_xy))
                for i in range(len(src_xy)):
                    # Update the point object's x/y coords
                    xy.x = src_xy[i, 0]
                    xy.y = src_xy[i, 1]
                    xy = self.project(xy)
                    xx[i] = xy.x
                    yy[i] = xy.y
            else:
                raise

        if self.to_180:
            # Get the places where we should wrap
            wrap_locs = (xx > 180) | (xx < -180) & (xx != HUGE_VAL)
            # Do the wrap at those locations
            xx[wrap_locs] = (((xx[wrap_locs] + 180) % 360) - 180)

        # Destination xy [ncoords, 2]
        return np.stack([xx, yy], axis=-1) * self.dest_scale

    cdef Point interpolate(self, double t) except *:
        raise NotImplementedError


cdef class CartesianInterpolator(Interpolator):
    cdef Point interpolate(self, double t) except *:
        cdef Point xy
        xy.x = self.start.x + (self.end.x - self.start.x) * t
        xy.y = self.start.y + (self.end.y - self.start.y) * t
        return self.project(xy)


cdef class SphericalInterpolator(Interpolator):
    cdef object geod
    cdef double azim
    cdef double s12

    cdef void init(self, src_crs, dest_crs) except *:
        self.transformer = Transformer.from_crs(src_crs, dest_crs, always_xy=True)

        cdef double major_axis = src_crs.ellipsoid.semi_major_metre
        cdef double flattening = 0
        if src_crs.ellipsoid.inverse_flattening > 0:
            flattening = 1 / src_crs.ellipsoid.inverse_flattening
        self.geod = Geod(a=major_axis, f=flattening)

    cdef void set_line(self, const Point &start, const Point &end):
        Interpolator.set_line(self, start, end)
        self.azim, _, self.s12 = self.geod.inv(start.x, start.y, end.x, end.y)

    cdef Point interpolate(self, double t) except *:
        cdef Point lonlat

        lonlat.x, lonlat.y, _ = self.geod.fwd(self.start.x, self.start.y, self.azim, self.s12 * t)
        return self.project(lonlat)


cdef enum State:
    POINT_IN = 1,
    POINT_OUT,
    POINT_NAN


cdef State get_state(const Point &point, object gp_domain, bool geom_fully_inside=False):
    cdef State state
    if geom_fully_inside:
        # Fast-path return because the geometry is fully inside
        return POINT_IN
    if isfinite(point.x) and isfinite(point.y):
        if shapely.__version__ >= "2":
            # Shapely 2.0 doesn't need to create/destroy a point
            state = POINT_IN if shapely.intersects_xy(gp_domain.context, point.x, point.y) else POINT_OUT
        else:
            g_point = sgeom.Point((point.x, point.y))
            state = POINT_IN if gp_domain.covers(g_point) else POINT_OUT
            del g_point
    else:
        state = POINT_NAN
    return state


@cython.cdivision(True)  # Want divide-by-zero to produce NaN.
cdef bool straightAndDomain(double t_start, const Point &p_start,
                            double t_end, const Point &p_end,
                            Interpolator interpolator, double threshold,
                            object gp_domain,
                            bool inside,
                            bool geom_fully_inside=False) except *:
    """
    Return whether the given line segment is suitable as an
    approximation of the projection of the source line.

    t_start: Interpolation parameter for the start point.
    p_start: Projected start point.
    t_end: Interpolation parameter for the end point.
    p_start: Projected end point.
    interpolator: Interpolator for current source line.
    threshold: Lateral tolerance in target projection coordinates.
    gp_domain: Prepared polygon of target map domain.
    inside: Whether the start point is within the map domain.
    geom_fully_inside: Whether all points are within the map domain.

    """
    # Straight and in-domain (de9im[7] == 'F')
    cdef bool valid
    cdef double t_mid
    cdef Point p_mid
    cdef double seg_dx, seg_dy
    cdef double mid_dx, mid_dy
    cdef double seg_hypot_sq
    cdef double along
    cdef double separation
    cdef double hypot

    # This could be optimised out of the loop.
    if not (isfinite(p_start.x) and isfinite(p_start.y)):
        valid = False
    elif not (isfinite(p_end.x) and isfinite(p_end.y)):
        valid = False
    else:
        # Find the projected mid-point
        t_mid = (t_start + t_end) * 0.5
        p_mid = interpolator.interpolate(t_mid)

        # Determine the closest point on the segment to the midpoint, in
        # normalized coordinates.
        #     ○̩ (x1, y1) (assume that this is not necessarily vertical)
        #     │
        #     │   D
        #    ╭├───────○ (x, y)
        #    ┊│┘     ╱
        #    ┊│     ╱
        #    ┊│    ╱
        #    L│   ╱
        #    ┊│  ╱
        #    ┊│θ╱
        #    ┊│╱
        #    ╰̍○̍
        #  (x0, y0)
        # The angle θ can be found by arctan2:
        #     θ = arctan2(y1 - y0, x1 - x0) - arctan2(y - y0, x - x0)
        # and the projection onto the line is simply:
        #     L = hypot(x - x0, y - y0) * cos(θ)
        # with the normalized form being:
        #     along = L / hypot(x1 - x0, y1 - y0)
        #
        # Plugging those into SymPy and .expand().simplify(), we get the
        # following equations (with a slight refactoring to reuse some
        # intermediate values):
        seg_dx = p_end.x - p_start.x
        seg_dy = p_end.y - p_start.y
        mid_dx = p_mid.x - p_start.x
        mid_dy = p_mid.y - p_start.y
        seg_hypot_sq = seg_dx*seg_dx + seg_dy*seg_dy

        along = (seg_dx*mid_dx + seg_dy*mid_dy) / seg_hypot_sq

        if isnan(along):
            valid = True
        else:
            valid = 0.0 < along < 1.0
            if valid:
                # For the distance of the point from the line segment, using
                # the same geometry above, use sin instead of cos:
                #     D = hypot(x - x0, y - y0) * sin(θ)
                # and then simplify with SymPy again:
                separation = (abs(mid_dx*seg_dy - mid_dy*seg_dx) /
                              sqrt(seg_hypot_sq))
                if inside:
                    # Scale the lateral threshold by the distance from
                    # the nearest end. I.e. Near the ends the lateral
                    # threshold is much smaller; it only has its full
                    # value in the middle.
                    valid = (separation <=
                             threshold * 2.0 * (0.5 - abs(0.5 - along)))
                else:
                    # Check if the mid-point makes less than ~11 degree
                    # angle with the straight line.
                    # sin(11') => 0.2
                    # To save the square-root we just use the square of
                    # the lengths, hence:
                    # 0.2 ^ 2 => 0.04
                    hypot = mid_dx*mid_dx + mid_dy*mid_dy
                    valid = ((separation * separation) / hypot) < 0.04

        if valid and not geom_fully_inside:
            # TODO: Re-use geometries, instead of create-destroy!

            # Create a LineString for the current end-point.
            g_segment = sgeom.LineString([
                (p_start.x, p_start.y),
                (p_end.x, p_end.y)])

            if inside:
                valid = gp_domain.covers(g_segment)
            else:
                valid = gp_domain.disjoint(g_segment)

            del g_segment

    return valid


cdef void bisect(double t_start, const Point &p_start, const Point &p_end,
                 object gp_domain, const State &state,
                 Interpolator interpolator, double threshold,
                 double &t_min, Point &p_min, double &t_max, Point &p_max,
                 bool geom_fully_inside=False) except *:
    cdef double t_current
    cdef Point p_current
    cdef bool valid

    # Initialise our bisection range to the start and end points.
    (&t_min)[0] = t_start
    (&p_min)[0] = p_start
    (&t_max)[0] = 1.0
    (&p_max)[0] = p_end

    # Start the search at the end.
    t_current = t_max
    p_current = p_max

    # TODO: See if we can convert the 't' threshold into one based on the
    # projected coordinates - e.g. the resulting line length.

    while abs(t_max - t_min) > 1.0e-6:
        if DEBUG:
            print("t: ", t_current)

        if state == POINT_IN:
            # Straight and entirely-inside-domain
            valid = straightAndDomain(t_start, p_start, t_current, p_current,
                                      interpolator, threshold,
                                      gp_domain, True, geom_fully_inside=geom_fully_inside)

        elif state == POINT_OUT:
            # Straight and entirely-outside-domain
            valid = straightAndDomain(t_start, p_start, t_current, p_current,
                                      interpolator, threshold,
                                      gp_domain, False, geom_fully_inside=geom_fully_inside)
        else:
            valid = not isfinite(p_current.x) or not isfinite(p_current.y)

        if DEBUG:
            print("   => valid: ", valid)

        if valid:
            (&t_min)[0] = t_current
            (&p_min)[0] = p_current
        else:
            (&t_max)[0] = t_current
            (&p_max)[0] = p_current

        t_current = (t_min + t_max) * 0.5
        p_current = interpolator.interpolate(t_current)


cdef void _project_segment(double[:] src_from, double[:] src_to,
                           double[:] dest_from, double[:] dest_to,
                           Interpolator interpolator,
                           object gp_domain,
                           double threshold, LineAccumulator lines,
                           bool geom_fully_inside=False) except *:
    cdef Point p_current, p_min, p_max, p_end
    cdef double t_current, t_min=0, t_max=1
    cdef State state

    p_current.x, p_current.y = src_from
    p_end.x, p_end.y = src_to
    if DEBUG:
        print("Setting line:")
        print("   ", p_current.x, ", ", p_current.y)
        print("   ", p_end.x, ", ", p_end.y)

    interpolator.set_line(p_current, p_end)
    # Now update the current/end with the destination (projected) coords
    p_current.x, p_current.y = dest_from
    p_end.x, p_end.y = dest_to
    if DEBUG:
        print("Projected as:")
        print("   ", p_current.x, ", ", p_current.y)
        print("   ", p_end.x, ", ", p_end.y)

    t_current = 0.0
    state = get_state(p_current, gp_domain, geom_fully_inside)

    cdef size_t old_lines_size = lines.size()
    while t_current < 1.0 and (lines.size() - old_lines_size) < 100:
        if DEBUG:
            print("Bisecting from: ", t_current, " (")
            if state == POINT_IN:
                print("IN")
            elif state == POINT_OUT:
                print("OUT")
            else:
                print("NAN")
            print(")")
            print("   ", p_current.x, ", ", p_current.y)
            print("   ", p_end.x, ", ", p_end.y)

        bisect(t_current, p_current, p_end, gp_domain, state,
               interpolator, threshold,
               t_min, p_min, t_max, p_max, geom_fully_inside=geom_fully_inside)
        if DEBUG:
            print("   => ", t_min, "to", t_max)
            print("   => (", p_min.x, ", ", p_min.y, ") to (",
                  p_max.x, ", ", p_max.y, ")")

        if state == POINT_IN:
            lines.add_point_if_empty(p_current)
            if t_min != t_current:
                lines.add_point(p_min)
                t_current = t_min
                p_current = p_min
            else:
                t_current = t_max
                p_current = p_max
                state = get_state(p_current, gp_domain, geom_fully_inside)
                if state == POINT_IN:
                    lines.new_line()

        elif state == POINT_OUT:
            if t_min != t_current:
                t_current = t_min
                p_current = p_min
            else:
                t_current = t_max
                p_current = p_max
                state = get_state(p_current, gp_domain, geom_fully_inside)
                if state == POINT_IN:
                    lines.new_line()

        else:
            t_current = t_max
            p_current = p_max
            state = get_state(p_current, gp_domain, geom_fully_inside)
            if state == POINT_IN:
                lines.new_line()


@lru_cache(maxsize=4)
def _interpolator(src_crs, dest_projection):
    # Get an Interpolator from the given CRS and projection.
    # Callers must hold a reference to these systems for the lifetime
    # of the interpolator. If they get garbage-collected while interpolator
    # exists you *will* segfault.

    cdef Interpolator interpolator
    if src_crs.is_geodetic():
        interpolator = SphericalInterpolator()
    else:
        interpolator = CartesianInterpolator()
    interpolator.init(src_crs, dest_projection)
    return interpolator


def project_linear(geometry not None, src_crs not None,
                   dest_projection not None):
    """
    Project a geometry from one projection to another.

    Parameters
    ----------
    geometry : `shapely.geometry.LineString` or `shapely.geometry.LinearRing`
        A geometry to be projected.
    src_crs : cartopy.crs.CRS
        The coordinate system of the line to be projected.
    dest_projection : cartopy.crs.Projection
        The projection for the resulting projected line.

    Returns
    -------
    `shapely.geometry.MultiLineString`
        The result of projecting the given geometry from the source projection
        into the destination projection.

    """
    cdef:
        double threshold = dest_projection.threshold
        Interpolator interpolator
        object g_domain
        double[:, :] src_coords, dest_coords
        unsigned int src_size, src_idx
        object gp_domain
        LineAccumulator lines

    g_domain = dest_projection.domain

    interpolator = _interpolator(src_crs, dest_projection)

    src_coords = np.asarray(geometry.coords)
    dest_coords = interpolator.project_points(src_coords)
    gp_domain = sprep.prep(g_domain)

    src_size = len(src_coords)  # check exceptions

    # Test the entire geometry to see if there are any domain crossings
    # If there are none, then we can skip expensive domain checks later
    # TODO: Handle projections other than rectangular
    cdef bool geom_fully_inside = False
    if isinstance(dest_projection, (ccrs._RectangularProjection, ccrs._WarpedRectangularProjection)):
        dest_line = sgeom.LineString([(x[0], x[1]) for x in dest_coords])
        if dest_line.is_valid:
            # We can only check for covers with valid geometries
            # some have nans/infs at this point still
            geom_fully_inside = gp_domain.covers(dest_line)

    lines = LineAccumulator()
    for src_idx in range(1, src_size):
        _project_segment(src_coords[src_idx - 1, :2], src_coords[src_idx, :2],
                         dest_coords[src_idx - 1, :2], dest_coords[src_idx, :2],
                         interpolator, gp_domain, threshold, lines,
                         geom_fully_inside=geom_fully_inside);

    del gp_domain

    multi_line_string = lines.as_geom()

    del lines, interpolator
    return multi_line_string


class _Testing:
    @staticmethod
    def straight_and_within(Point l_start, Point l_end,
                            double t_start, double t_end,
                            Interpolator interpolator, double threshold,
                            object domain):
        # This function is for testing/demonstration only.
        # It is not careful about freeing resources, and it short-circuits
        # optimisations that are made in the real algorithm (in exchange for
        # a convenient signature).

        cdef object gp_domain
        gp_domain = sprep.prep(domain)

        state = get_state(interpolator.project(l_start), gp_domain)
        cdef bool p_start_inside_domain = state == POINT_IN

        # l_end and l_start should be un-projected.
        interpolator.set_line(l_start, l_end)

        cdef Point p0 = interpolator.interpolate(t_start)
        cdef Point p1 = interpolator.interpolate(t_end)

        valid = straightAndDomain(
            t_start, p0, t_end, p1,
            interpolator, threshold,
            gp_domain, p_start_inside_domain)

        del gp_domain
        return valid

    @staticmethod
    def interpolator(source_crs, destination_projection):
        return _interpolator(source_crs, destination_projection)

    @staticmethod
    def interp_prj_pt(Interpolator interp, const Point &lonlat):
        return interp.project(lonlat)

    @staticmethod
    def interp_t_pt(Interpolator interp, const Point &start, const Point &end, double t):
        interp.set_line(start, end)
        return interp.interpolate(t)