1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
|
from ._functionals import _functional
import numpy
def copydoc(fromfunc, sep="\n"):
"""
Decorator: Copy the docstring of `fromfunc`
"""
def _decorator(func):
sourcedoc = fromfunc.__doc__
if func.__doc__ is None:
func.__doc__ = sourcedoc
else:
func.__doc__ = sep.join([sourcedoc, func.__doc__])
return func
return _decorator
class functional(_functional):
def __init__(self, name=None, order=-1, params=None, mode=None, dtype=0):
if isinstance(dtype, str):
dtypes = {'real': 0, 'complex': 1}
dtype = dtypes.get(dtype.lower())
if numpy.iscomplexobj(params):
dtype = 1
self._dtype = dtype
progtext = ""
if not isinstance(name, str):
raise TypeError("'name' was not of type string")
if not (isinstance(order, int) or isinstance(order, str)):
raise TypeError("'order' was not of type integer or string")
else:
if isinstance(order, str):
progtext = order
order = -1
# our own functionals server
d = {'type': name, 'order': order, 'progtext': progtext}
if isinstance(mode, dict):
d['mode'] = mode
_functional.__init__(self, d, self._dtype)
if hasattr(params, "__len__"):
params = self._flatten(params)
if len(params) == 0:
pass
elif len(params) == self.npar():
self.set_parameters(params)
else:
raise ValueError("Incorrect number of parameters "
"specified in functional")
def __repr__(self):
return str(self.todict())
def _flatten(self, x):
if (isinstance(x, numpy.ndarray) and x.ndim > 1
and x.ndim == self.ndim()):
return x.flatten()
return x
def ndim(self):
return _functional.ndim(self)
def npar(self):
"""
Return the number of parameters of the functional
:retval: int
"""
return _functional.npar(self)
def __len__(self):
return self.npar()
# def __getitem__(self, i):
# return self.get_parameters()[i]
# def __setitem__(self, i, v):
# return self.set_parameter(i, v)
def set_parameters(self, params):
params = self._flatten(params)
if self._dtype == 0:
return _functional._setparameters(self, params)
else:
return _functional._setparametersc(self, params)
def set_parameter(self, idx, val):
if self._dtype == 0:
return _functional._setpar(self, idx, val)
else:
return _functional._setparc(self, idx, val)
def get_parameters(self):
if self._dtype == 0:
return _functional._parameters(self)
else:
return _functional._parametersc(self)
def f(self, x):
"""Calculate the value of the functional for the specified arguments
(taking any specified mask into account).
:param x: the value(s) to evaluate at
"""
x = self._flatten(x)
if self._dtype == 0:
return numpy.array(_functional._f(self, x))
else:
return numpy.array(_functional._fc(self, x))
def __call__(self, x, derivatives=False):
if derivatives:
return numpy.array(self.fdf(x))
else:
return numpy.array(self.f(x))
def fdf(self, x):
"""Calculate the value of the functional for the specified arguments,
and the derivatives with respect to the parameters (taking any
specified mask into account).
:param x: the value(s) to evaluate at
"""
x = self._flatten(x)
n = 1
if hasattr(x, "__len__"):
n = len(x)
if self._dtype == 0:
retval = _functional._fdf(self, x)
else:
retval = _functional._fdfc(self, x)
if len(retval) == n:
return numpy.array(retval)
return numpy.array(retval).reshape(self.npar() + 1,
n // self.ndim()).transpose()
def add(self, other):
if not isinstance(other, functional):
raise TypeError("'other' is not a functional")
if self._dtype != other._dtype:
raise TypeError("'other' is not of the same value type")
if self._dtype == 0:
_functional._add(self, other)
else:
_functional._addc(self, other)
def set_mask(self, i, msk):
_functional._setmask(self, i, msk)
def set_masks(self, msk):
_functional._setmasks(self, msk)
def get_masks(self):
return _functional._masks(self)
def todict(self):
return _functional.todict(self)
class gaussian1d(functional):
"""Create a 1-dimensional Gaussian with the specified height, width and
center.
:param params: the [height, center, width] as a list
"""
def __init__(self, params=None, dtype=0):
functional.__init__(self, name="gaussian1d", params=params,
dtype=dtype)
@copydoc(functional.npar)
def npar(self):
"""
Equivalent::
>>> g = gaussian1d([1, 2, 3])
>>> print g.npar()
3
>>> print len(g)
3
"""
return functional.npar(self)
@copydoc(functional.f)
def f(self, x):
"""
Example::
>>> a = gaussian1d()
>>> print(a.f(0.0))
[ 1.]
>>> print(a(0.0)) #equivalent
[ 1.]
"""
return functional.f(self, x)
@copydoc(functional.fdf)
def fdf(self, x):
"""
Example::
>>> g = gaussian1d()
>>> print(g.fdf(0.0))
[[ 1., 1., 0., 0.]]
>>> print(g(0.0, derivatives=True)) #equivalent
[[ 1., 1., 0., 0.]]
"""
return functional.fdf(self, x)
class gaussian2d(functional):
"""
Create a two-dimensional gaussian.
:param params: list [amplitude, centers, major width, ratio, angle] of
Gaussian default is [1, 0, 0, 1, 1, 0]
:param dtype: The data type. One of 'real' or 0, or 'complex' or 1
"""
def __init__(self, params=None, dtype=0):
if params is None:
params = [1, 0, 0, 1, 1, 0]
functional.__init__(self, name="gaussian2d",
params=params,
dtype=dtype)
@copydoc(functional.npar)
def npar(self):
"""
Equivalent::
>>> g = gaussian2d([1, 2, 3][4, 5, 6])
>>> print g.npar()
6
>>> print len(g)
6
"""
return functional.npar(self)
@copydoc(functional.f)
def f(self, x):
"""
Example::
>>> a = gaussian2d()
>>> print(a.f(0.0))
[]
>>> print(a(0.0)) #equivalent
[]
"""
return functional.f(self, x)
@copydoc(functional.fdf)
def fdf(self, x):
"""
Example::
>>> a = gaussian2d()
>>> print(a.fdf(0))
[]
>>> print(g(0.0, derivatives=True)) #equivalent
[]
"""
return functional.fdf(self, x)
class poly(functional):
"""
Create a polynomial of specified degree. The default parameters are all 1.
(Note that using the generic functional function the parameters are all
set to 0).
:param order: the order of the polynomial (number of parameters -1)
:param params: the values of the parameters as a list.
:param dtype: the optional data type. Default is float, but will be
auto-detected from `params`. Can be set to 'complex'.
"""
def __init__(self, order, params=None, dtype=0):
functional.__init__(self, name="poly",
order=order,
params=params,
dtype=dtype)
if params is None:
self.set_parameters([v + 1. for v in self.get_parameters()])
@copydoc(functional.npar)
def npar(self):
"""
Equivalent::
>>> p = poly(5)
>>> print p.npar()
6
>>> print len(p)
6
"""
return functional.npar(self)
@copydoc(functional.f)
def f(self, x):
"""
Example::
>>> p = poly(5)
>>> print(p.f(0.0))
[ 1.]
>>> print(p(0.0)) # equivalent
[ 1.]
"""
return functional.f(self, x)
@copydoc(functional.fdf)
def fdf(self, x):
"""
Example::
>>> p = poly(5)
>>> print(p.fdf(0.0))
[[ 1., 1., 0., 0., 0., 0., 0.]]
>>>print(p(0.0, derivatives=True)) # equivalent
[[ 1., 1., 0., 0., 0., 0., 0.]]
"""
return functional.fdf(self, x)
class oddpoly(functional):
"""Create an odd polynomial of specified degree.
:param order: the order of the polynomial
:param params: the values of the parameters as a list.
:param dtype: the optional data type. Default is float, but will be
auto-detected from `params`. Can be set to 'complex'.
"""
def __init__(self, order, params=None, dtype=0):
functional.__init__(self, name="oddpoly",
order=order,
params=params,
dtype=dtype)
if params is None:
self.set_parameters([v + 1. for v in self.get_parameters()])
@copydoc(functional.npar)
def npar(self):
"""
Equivalent::
>>> p = oddpoly(3)
>>> print p.npar()
2
>>> print len(p)
2
"""
return functional.npar(self)
@copydoc(functional.f)
def f(self, x):
"""
Example::
>>> p = oddpoly(3)
>>> print(p.f(0.0))
[ 0.]
>>> print(p(0.0)) # equivalent
[ 0.]
"""
return functional.f(self, x)
@copydoc(functional.fdf)
def fdf(self, x):
"""
Example::
>>> p = oddpoly(3)
>>> print(p.fdf(0.0))
[[ 0., 0., 0.]]
>>> print(p(0.0, derivatives=True)) # equivalent
[[ 0., 0., 0.]]
"""
return functional.fdf(self, x)
class evenpoly(functional):
"""Create an even polynomial of specified degree.
:param order: the order of the polynomial
:param params: the values of the parameters as a list.
:param dtype: the optional data type. Default is float, but will be
auto-detected from `params`. Can be set to 'complex'.
"""
def __init__(self, order, params=None, dtype=0):
functional.__init__(self, name="evenpoly",
order=order,
params=params,
dtype=dtype)
if params is None:
self.set_parameters([v + 1. for v in self.get_parameters()])
@copydoc(functional.npar)
def npar(self):
"""
Equivalent::
>>> p = evenpoly(2)
>>> print p.npar()
2
>>> print len(p)
2
"""
return functional.npar(self)
@copydoc(functional.f)
def f(self, x):
"""
Example::
>>> p = evenpoly(2)
>>> print(p.f(0.0))
[ 1.]
>>> print(p(0.0)) # equivalent
[ 1.]
"""
return functional.f(self, x)
@copydoc(functional.fdf)
def fdf(self, x):
"""
Example::
>>> p = oddpoly(3)
>>> print(p.fdf(0.0))
[[ 1., 1., 0.]]
>>>print(p(0.0, derivatives=True)) # equivalent
[[ 1., 1., 0.]]
"""
return functional.fdf(self, x)
class chebyshev(functional):
def __init__(self, order, params=None,
xmin=-1., xmax=1., ooimode='constant',
dtype=0):
modes = "constant zeroth extrapolate cyclic edge".split()
if ooimode not in modes:
raise ValueError("Unrecognized ooimode")
mode = {'interval': [float(xmin), float(xmax)], 'intervalMode': ooimode,
'default': float(0.0)}
functional.__init__(self, name="chebyshev",
order=order,
params=params,
mode=mode,
dtype=dtype)
if params is None:
self.set_parameters([v + 1. for v in self.get_parameters()])
@copydoc(functional.npar)
def npar(self):
"""
Equivalent::
>>> ch = chebyshev(2)
>>> print ch.npar()
4
>>> print len(p)
4
"""
return functional.npar(self)
@copydoc(functional.f)
def f(self, x):
"""
Example::
>>> ch = chebyshev(2)
>>> print(ch.f(0.0))
[ 0.]
>>> print(ch(0.0)) # equivalent
[ 0.]
"""
return functional.f(self, x)
@copydoc(functional.fdf)
def fdf(self, x):
"""
Example::
>>> ch = chebyshev(2)
>>> print(ch.fdf(0.0))
[[ 0., 1., 0., -1.]]
>>>print(ch(0.0, derivatives=True)) # equivalent
[[ 0., 1., 0., -1.]]
"""
return functional.fdf(self, x)
class compound(functional):
def __init__(self, dtype=0):
"""Create a compound function.
This class takes a arbitary number of functions and
generates a new single function object.
Example::
>>> d = poly(2)
>>> gauss1d = gaussian1d([1, 0, 1])
>>> sum = compound()
>>> sum.add(d)
>>> sum.add(gauss1d)
>>> print(sum(2))
[ 7.00001526]
"""
functional.__init__(self, name="compound", dtype=dtype)
class combi(functional):
def __init__(self, dtype=0):
"""Form a linear combinations of functions object.
Example::
>>> const = poly(0)
>>> linear = poly(1)
>>> square = poly(2)
>>> c = combi()
>>> c.add(const)
>>> c.add(linear)
>>> c.add(square)
>>> print(c(0))
[ 3.]
"""
functional.__init__(self, name="combi", dtype=dtype)
class compiled(functional):
"""Create a function based on the programable string. The string should
be a single expression, which can use the standard operators and
functions and parentheses, having a single value as a result. The
parameters of the function can be addressed with the *p* variable. This
variable can be indexed in two ways. The first way is using the standard
algebraic way, where the parameters are: ``p (or p0), p1, p2, ...`` . The
second way is by indexing, where the parameters are addressed as: p[0],
p[1], ... . The arguments are accessed in the same way, but using the
variable name x. The compilation determines the number of dimensions and
parameters of the produced function.
Operators are the standard operators (including comparisons, which
produce a zero or one result; and conditional expression).
In addition to the standard expected functions, there is an atan with
either one or two arguments (although atan2 exists as well), and pi and
ee with no or one argument. The functional created behaves as all other
functionals, and hence can be used in combinations.
Examples::
>>> from casacore.functionals import compiled
>>> import math
>>> a = compiled('sin(pi(0.5) ) +pi'); # an example
>>> print a(0)
array([ 4.1415926535897931])
>>> b = compiled('p*exp(-(x/p[2])^2)')
>>> print b.get_parameters()
[0.0, 0.0]
>>> b.set_parameters([10, 1]) # change to height 10 and halfwidth 1
>>> print b([-1,-0.5,0,.5,1])
array([ 3.6787944117144233,
7.788007830714049,
10.0,
7.788007830714049,
3.6787944117144233])
# the next one is sync(x), catering for x=0
# using the fact that comparisons deliver values. Note
# the extensive calculation to make sure no divison by 0
>>> synca = compiled('( (x==0) * 1)+( (x!=0) * sin(x+(x==0)*1)/(x+(x==0)*1) )')
>>> print synca([-1,0,1])
[0.841471, 1., 0.841471]
>>> print math.sin(1)/1
0.841471
# using conditional expressions:
print compiled('x==0 ? 1 : sin(x)/x')([-1,0,1])
[0.841471, 1.0, 0.841471]
"""
def __init__(self, code="", params=None, dtype=0):
functional.__init__(self, name="compiled", order=code,
params=params, dtype=dtype)
|