1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
|
# tableutil.py: Utility table functions
# Copyright (C) 2006
# Associated Universities, Inc. Washington DC, USA.
#
# This library is free software; you can redistribute it and/or modify it
# under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation; either version 3 of the License, or (at your
# option) any later version.
#
# This library is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
# License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this library; if not, write to the Free Software Foundation,
# Inc., 675 Massachusetts Ave, Cambridge, MA 02139, USA.
#
# Correspondence concerning AIPS++ should be addressed as follows:
# Internet email: aips2-request@nrao.edu.
# Postal address: AIPS++ Project Office
# National Radio Astronomy Observatory
# 520 Edgemont Road
# Charlottesville, VA 22903-2475 USA
#
from collections import defaultdict
from .table import table
from .tablehelper import _remove_prefix, _value_type_name
def tablefromascii(tablename, asciifile,
headerfile='',
autoheader=False, autoshape=[],
columnnames=[], datatypes=[],
sep=' ',
commentmarker='',
firstline=1, lastline=-1,
readonly=True,
lockoptions='default', ack=True):
"""Create a table from an ASCII file.
Create a table from a file in ASCII format. Columnar data as well as
table and column keywords may be specified.
Once the table is created from the ASCII data, it is opened in the
specified mode and a table object is returned.
The table columns are filled from a file containing the data values
separated by a separator (one line per table row). The default
separator is a blank. Blanks before and after the separator are ignored.
If a non-blank separator is used, values can be empty. Such values
default to 0, empty string, or F depending on the data type. E.g.
1,,2, has 4 values of which the 2nd and 4th are empty and default to 0.
Similarly if fewer values are given than needed, the missing values
get the default value.
Either the data format can be explicitly specified or it can be found
automatically. The former gives more control in ambiguous situations.
Both scalar and array columns can be generated from the ASCII input.
The format string determines the type and optional shape.
It is possible to give the column names and their data types in
various ways:
- Using 2 header lines (as described below) as the first two lines
in the data file or in a separate header file. This is the default way.
- Derive them automatically from the data (`autoheader=True`).
- Using the arguments `columnnames` and
`datatypes` (as non-empty vectors of strings).
It implies (`autoheader=False`). The data types should be
given in the same way as done in headers.
In automatic mode (`autoheader=True`) the first line
of the ASCII data is analyzed
to deduce the data types. Only the types I, D, and A can be
recognized. A number without decimal point or exponent is I (integer),
otherwise it is D (double). Any other string is A (string).
Note that a number may contain a leading sign (+ or -).
The `autoshape` argument can be used to specify if the input
should be stored as multiple scalars (the default) or as a single
array. In the latter case one axis in the shape can be defined as
variable length by giving it the value 0. It means that the actual
array shape in a row is determined by the number of values in the
corresponding input line.
Columns get the names `Column1`, `Column2`, etc..
For example:
1. `autoshape=[]` (which is the default) means that all values
are to be stored as scalar columns.
2. `autoshape=0` means that all values in a row are to be stored as
a variable length vector.
3. `autoshape=10` defines a fixed length vector. If an input
line contains less than 10 values, the vector is filled with default
values. If more than 10 values, the latter values are ignored.
4. `autoshape=[5,0]` defines a 2-dim array of which the 2nd axis is
variable. Note that if an input line does not contain a multiple of 5
values, the array is filled with default values.
If the format of the table is explicitly specified, it has to be done
either in the first two lines of the data file (named by the
argument filename), or in a separate header file (named by the
argument headerfile). In both forms, table keywords may also be
specified before the column definitions.
The column names and types can be described by two lines:
1. The first line contains the names of the columns.
These names may be enclosed in quotes (either single or double).
2. The second line contains the data type and optionally the shape
of each column. Valid types are:
- S for Short data
- I for Integer data
- R for Real data
- D for Double Precision data
- X for Complex data (Real followed by Imaginary)
- Z for Complex data (Amplitude then Phase)
- DX for Double Precision Complex data (Real followed by Imaginary)
- DZ for Double Precision Complex data (Amplitude then Phase)
- A for ASCII data (a value must be enclosed in single or double quotes
if it contains whitespace)
- B for Boolean data (False are empty string, 0, or any string
starting with F, f, N, or n).
If a column is an array, the shape has to be given after the data type
without any whitespace. E.g. `I10` defines an integer vector
of length 10. `A2,5` defines a 2-dim string array with shape
[2,5]. Note that `I` is not the same as `I1` as the
first one defines a scalar and the other one a vector with length 1.
The last column can have one variable length axis denoted by the value 0.
It "consumes" the remainder of the input line.
If the argument headerfile is set then the header information is
read from that file instead of the first lines of the data file.
To give a simple example of the form where the header information
is located at the top of the data file::
COLI COLF COLD COLX COLZ COLS
I R D X Z A
1 1.1 1.11 1.12 1.13 1.14 1.15 Str1
10 11 12 13 14 15 16 ""
Note that a complex number consists of 2 numbers.
Also note that an empty string can be given.
Let us now give an example of a separate header file that one might use to
get interferometer data into casacore::
U V W TIME ANT1 ANT2 DATA
R R R D I I X1,0
The data file would then look like::
124.011 54560.0 3477.1 43456789.0990 1 2 4.327 -0.1132
34561.0 45629.3 3900.5 43456789.0990 1 3 5.398 0.4521
Note that the DATA column is defined as a 2-dim array of 1
correlation and a variable number of channels, so the actual number of
channels is determined by the input. In this example both rows will
have 1 channel (note that a complex value contains 2 values).
Tables may have keywords in addition to the columns. The keywords
are useful for holding information that is global to the entire
table (such as author, revision, history, etc.).
The keywords in the header definitions must preceed the column descriptions.
They must be enclosed between a line that starts with ".key..." and
a line that starts with ".endkey..." (where ... can be anything).
A table keywordset and column keywordsets can be specified.
The latter can be specified by specifying the column name after
the .keywords string.
Between these two lines each line should contain the following:
- The keyword name, e.g., ANYKEY
- The datatype and optional shape of the keyword
(cf. list of valid types above)
- The value or values for the keyword (the keyword may contain
a scalar or an array of values). e.g., 3.14159 21.78945
Thus to continue the example above, one might wish to add keywords
as follows::
.keywords
DATE A "97/1/16"
REVISION D 2.01
AUTHOR A "Tim Cornwell"
INSTRUMENT A "VLA"
.endkeywords
.keywords TIME
UNIT A "s"
.endkeywords
U V W TIME ANT1 ANT2 DATA
R R R D I I X1,0
Similarly to the column format string, the keyword formats can also
contain shape information. The only difference is that if no shape is
given, a keyword can have multiple values (making it a vector).
It is possible to ignore comment lines in the header and data file
by giving the `commentmarker`. It indicates that lines
starting with the given marker are ignored. Note that the marker can
be a regular expression (e.g. `' *//'` tells that lines starting
with // and optionally preceeded by blanks have to be ignored).
With the arguments `firstline` and `lastline` one can
specify which lines have to be taken from the input file. A negative value
means 1 for `firstline` or end-of-file for `lastline`.
Note that if the headers and data are combined in one file,
these line arguments apply to the whole file. If headers and data are in
separate files, these line arguments apply to the data file only.
Also note that ignored comment lines are counted, thus are used to
determine which lines are in the line range.
The number of rows is determined by the number of lines read from the data
file.
"""
import os.path
filename = os.path.expandvars(asciifile)
filename = os.path.expanduser(filename)
if not os.path.exists(filename):
s = "File '%s' not found" % (filename)
raise IOError(s)
if headerfile != '':
filename = os.path.expandvars(headerfile)
filename = os.path.expanduser(filename)
if not os.path.exists(filename):
s = "File '%s' not found" % (filename)
raise IOError(s)
tab = table(asciifile, headerfile, tablename, autoheader, autoshape,
sep, commentmarker, firstline, lastline,
_columnnames=columnnames, _datatypes=datatypes, _oper=1)
print('Input format: [' + tab._getasciiformat() + ']')
# Close table and reopen it in correct way.
tab = 0
return table(tablename, readonly=readonly, lockoptions=lockoptions,
ack=ack)
# Create a description of a scalar column
def makescacoldesc(columnname, value,
datamanagertype='',
datamanagergroup='',
options=0, maxlen=0, comment='',
valuetype='', keywords={}):
"""Create description of a scalar column.
A description for a scalar column can be created from a name for
the column and a data value, which is used only to determine the
type of the column. Note that a dict value is also possible.
It is possible to create the column description in more detail
by giving the data manager name, group, option, and comment as well.
The data manager type tells which data manager (storage manager)
is used to store the columns. The data manager type and group are
explained in more detail in the `casacore Tables
<../../casacore/doc/html/group__Tables__module.html>`_ documentation.
It returns a dict with fields `name` and `desc` which can thereafter be used
to build a table description using function :func:`maketabdesc`.
`columname`
Name of column
`value`
Example data value used to determine the column's data type.
It is only used if argument `valuetype` is not given.
`datamanagertype`
Type of data manager which can be one of StandardStMan (default)
or IncrementalStMan. The latter one can save disk space if many subsequent
cells in the column will have the same value.
`datamanagergroup`
Data manager group. Only for the expert user.
`options`
Options. Need not be filled in.
`maxlen`
Maximum length of string values in a column.
Default 0 means unlimited.
`comment`
Comment: informational for user.
`valuetype`
A string giving the column's data type. Possible data types are
bool (or boolean), uchar (or byte), short, int (or integer), uint,
float, double, complex, dcomplex, and string.
'keywords'
A dict defining initial keywords for the column.
For example::
scd1 = makescacoldesc("col2", ""))
scd2 = makescacoldesc("col1", 1, "IncrementalStMan")
td = maketabdesc([scd1, scd2])
This creates a table description consisting of an integer column `col1`,
and a string column `col2`. `col1` uses the IncrementalStMan storage manager,
while `col2` uses the default storage manager StandardStMan.
"""
vtype = valuetype
if vtype == '':
vtype = _value_type_name(value)
rec2 = {'valueType': vtype,
'dataManagerType': datamanagertype,
'dataManagerGroup': datamanagergroup,
'option': options,
'maxlen': maxlen,
'comment': comment,
'keywords': keywords}
return {'name': columnname,
'desc': rec2}
# Create a description of an array column
def makearrcoldesc(columnname, value, ndim=0,
shape=[], datamanagertype='',
datamanagergroup='',
options=0, maxlen=0, comment='',
valuetype='', keywords={}):
"""Create description of an array column.
A description for a scalar column can be created from a name for
the column and a data value, which is used only to determine the
type of the column. Note that a dict value is also possible.
It is possible to create the column description in more detail
by giving the dimensionality, shape, data manager name, group, option,
and comment as well.
The data manager type tells which data manager (storage manager)
is used to store the columns. The data manager type and group are
explained in more detail in the `casacore Tables
<../../casacore/doc/html/group__Tables__module.html>`_ documentation.
It returns a dict with fields `name` and `desc` which can thereafter be used
to build a table description using function :func:`maketabdesc`.
`name`
The name of the column.
`value`
A data value, which is only used to determine the data type of the column.
It is only used if argument `valuetype` is not given.
`ndim`
Optionally the number of dimensions. A value > 0 means that all
arrays in the column must have that dimensionality. Note that the
arrays can still differ in shape unless the shape vector is also given.
`shape`
An optional sequence of integers giving the shape of the array in each
cell. If given, it forces option FixedShape (see below) and sets the
number of dimensions (if not given). All arrays in the column get the
given shape and the array is created as soon as a row is added.
Note that the shape vector gives the shape in each table cell; the
number of rows in the table should NOT be part of it.
`datamanagertype`
Type of data manager which can be one of StandardStMan (default),
IncrementalStMan, TiledColumnStMan, TiledCellStMan, or TiledShapeStMan.
The tiled storage managers are usually used for bigger data arrays.
`datamanagergroup`
Data manager group. Only for the expert user.
`options`
Optionally numeric array options which can be added to combine them.
`1` means Direct.
It tells that the data are directly stored in the table. Direct
forces option FixedShape. If not given, the array is indirect, which
means that the data will be stored in a separate file.
`4` means FixedShape.
This option does not need to be given, because it is enforced if
the shape is given. FixedShape means that the shape of the array must
be the same in each cell of the column. Otherwise the array shapes may
be different in each column cell and is it possible that a cell does
not contain an array at all.
Note that when given (or implicitly by option Direct), the
shape argument must be given as well.
Default is 0, thus indirect and variable shaped.
`maxlen`
Maximum length of string values in a column.
Default 0 means unlimited.
`comment`
Comment: informational for user.
`valuetype`
A string giving the column's data type. Possible data types are
bool (or boolean), uchar (or byte), short, int (or integer), uint,
float, double, complex, dcomplex, and string.
'keywords'
A dict defining initial keywords for the column.
For example::
acd1= makescacoldesc("arr1", 1., 0, [2,3,4])
td = maketabdesc(acd1)
This creates a table description consisting of an array column `arr1`
containing 3-dim arrays of doubles with shape [2,3,4].
"""
vtype = valuetype
if vtype == '':
vtype = _value_type_name(value)
if len(shape) > 0:
if ndim <= 0:
ndim = len(shape)
rec2 = {'valueType': vtype,
'dataManagerType': datamanagertype,
'dataManagerGroup': datamanagergroup,
'ndim': ndim,
'shape': shape,
'_c_order': True,
'option': options,
'maxlen': maxlen,
'comment': comment,
'keywords': keywords}
return {'name': columnname,
'desc': rec2}
# Create a description of a column
def makecoldesc(columnname, desc):
"""Create column description using the description of another column.
The other description can be obtained from a table using function
:func:`getcoldesc` or from another column description dict using
`otherdesc['desc']`.
It returns a dict with fields `name` and `desc` which can thereafter be used
to build a table description using function :func:`maketabdesc`.
`columname`
Name of column
`desc`
Description of the column
For example::
cd1 = makecoldesc("col2", t.getcoldesc('othercol'))
td = maketabdesc(cd1)
This creates a table description consisting of a column `col2` having
the same description as column `othercol`.
"""
return {'name': columnname,
'desc': desc}
# Create a table description from a set of column descriptions
def maketabdesc(descs=[]):
"""Create a table description.
Creates a table description from a set of column descriptions. The
resulting table description can be used in the :class:`table` constructor.
For example::
scd1 = makescacoldesc("col2", "aa")
scd2 = makescacoldesc("col1", 1, "IncrementalStMan")
scd3 = makescacoldesc("colrec1", {})
acd1 = makearrcoldesc("arr1", 1, 0, [2,3,4])
acd2 = makearrcoldesc("arr2", 0.+0j)
td = maketabdesc([scd1, scd2, scd3, acd1, acd2])
t = table("mytable", td, nrow=100)
| This creates a table description `td` from five column descriptions
and then creates a 100-row table called `mytable` from the table
description.
| The columns contain respectivily strings, integer scalars, records,
3D integer arrays with fixed shape [2,3,4], and complex arrays with
variable shape.
"""
rec = {}
# If a single dict is given, make a list of it.
if isinstance(descs, dict):
descs = [descs]
for desc in descs:
colname = desc['name']
if colname in rec:
raise ValueError('Column name ' + colname + ' multiply used in table description')
rec[colname] = desc['desc']
return rec
def makedminfo(tabdesc, group_spec=None):
"""Creates a data manager information object.
Create a data manager information dictionary outline from a table description.
The resulting dictionary is a bare outline and is available for the purposes of
further customising the data manager via the `group_spec` argument.
The resulting dictionary can be used in the :class:`table` constructor and
the :meth:`default_ms` and :meth:`default_ms_subtable` functions.
`tabdesc`
The table description
`group_spec`
The SPEC for a data manager group. In practice this is useful for
setting the Default Tile Size and Maximum Cache Size for the Data Manager::
{
'WeightColumnGroup' : {
'DEFAULTTILESHAPE': np.int32([4,4,4]),
'MAXIMUMCACHESIZE': 1000,
}
}
This should be used with care.
"""
if group_spec is None:
group_spec = {}
class DMGroup(object):
"""
Keep track of the columns, type and spec of each data manager group
"""
def __init__(self):
self.columns = []
self.type = None
self.spec = None
dm_groups = defaultdict(DMGroup)
# Iterate through the table columns, grouping them
# by their dataManagerGroup
for c, d in tabdesc.items():
if c in ('_define_hypercolumn_', '_keywords_', '_private_keywords_'):
continue
# Extract group and data manager type
group = d.get("dataManagerGroup", "StandardStMan")
type_ = d.get("dataManagerType", "StandardStMan")
# Set defaults if necessary
if not group:
group = "StandardStMan"
if not type_:
type_ = "StandardStMan"
# Obtain the (possibly empty) data manager group
dm_group = dm_groups[group]
# Add the column
dm_group.columns.append(c)
# Set the spec
if dm_group.spec is None:
dm_group.spec = group_spec.get(group, {})
# Check that the data manager type is consistent across columns
if dm_group.type is None:
dm_group.type = type_
elif not dm_group.type == type_:
raise ValueError("Mismatched dataManagerType '%s' "
"for dataManagerGroup '%s' "
"Previously, the type was '%s'" %
(type_, group, dm_group.type))
# Output a data manager entry
return {
'*%d'%(i+1): {
'COLUMNS': dm_group.columns,
'TYPE': dm_group.type,
'NAME': group,
'SPEC' : dm_group.spec,
'SEQNR': i
} for i, (group, dm_group)
in enumerate(dm_groups.items())
}
# Create the old glish names for them.
tablecreatescalarcoldesc = makescacoldesc
tablecreatearraycoldesc = makearrcoldesc
tablecreatedesc = maketabdesc
tablecreatedm = makedminfo
# Define a hypercolumn in the table description.
def tabledefinehypercolumn(tabdesc,
name, ndim, datacolumns,
coordcolumns=False,
idcolumns=False):
"""Add a hypercolumn to a table description.
It defines a hypercolumn and adds it the given table description.
A hypercolumn is an entity used by the Tiled Storage Managers (TSM). It
defines which columns have to be stored together with a TSM.
It should only be used by expert users who want to use a TSM to its
full extent. For a basic TSM s hypercolumn definition is not needed.
tabledesc
A table description (result from :func:`maketabdesc`).
name
Name of hypercolumn
ndim
Dimensionality of hypercolumn; normally 1 more than the dimensionality
of the arrays in the data columns to be stored with the TSM
datacolumns
Data columns to be stored with TSM
coordcolumns
Optional coordinate columns to be stored with TSM
idcolumns
Optional id columns to be stored with TSM
For example::
scd1 = makescacoldesc("col2", "aa")
scd2 = makescacoldesc("col1", 1, "IncrementalStMan")
scd3 = makescacoldesc("colrec1", {})
acd1 = makearrcoldesc("arr1", 1, 0, [2,3,4])
acd2 = makearrcoldesc("arr2", as_complex(0))
td = maketabdesc([scd1, scd2, scd3, acd1, acd2])
tabledefinehypercolumn(td, "TiledArray", 4, ["arr1"])
tab = table("mytable", tabledesc=td, nrow=100)
| This creates a table description `td` from five column descriptions
and then creates a 100-row table called mytable from the table
description.
| The columns contain respectivily strings, integer scalars, records,
3D integer arrays with fixed shape [2,3,4], and complex arrays with
variable shape.
| The first array is stored with the Tiled Storage Manager (in this case
the TiledColumnStMan).
"""
rec = {'HCndim': ndim,
'HCdatanames': datacolumns}
if not isinstance(coordcolumns, bool):
rec['HCcoordnames'] = coordcolumns
if not isinstance(idcolumns, bool):
rec['HCidnames'] = idcolumns
if '_define_hypercolumn_' not in tabdesc:
tabdesc['_define_hypercolumn_'] = {}
tabdesc['_define_hypercolumn_'][name] = rec
def tabledelete(tablename, checksubtables=False, ack=True):
"""Delete a table on disk.
It is the same as :func:`table.delete`, but without the need to open
the table first.
"""
tabname = _remove_prefix(tablename)
t = table(tabname, ack=False)
if t.ismultiused(checksubtables):
print('Table', tabname, 'cannot be deleted; it is still in use')
else:
t = 0
table(tabname, readonly=False, _delete=True, ack=False)
if ack:
print('Table', tabname, 'has been deleted')
def tableexists(tablename):
"""Test if a table exists."""
result = True
try:
t = table(tablename, ack=False)
except:
result = False
return result
def tableiswritable(tablename):
"""Test if a table is writable."""
result = True
try:
t = table(tablename, readonly=False, ack=False)
result = t.iswritable()
except:
result = False
return result
def tablecopy(tablename, newtablename, deep=False, valuecopy=False, dminfo={},
endian='aipsrc', memorytable=False, copynorows=False):
"""Copy a table.
It is the same as :func:`table.copy`, but without the need to open
the table first.
"""
t = table(tablename, ack=False)
return t.copy(newtablename, deep=deep, valuecopy=valuecopy,
dminfo=dminfo, endian=endian, memorytable=memorytable,
copynorows=copynorows)
def tablerename(tablename, newtablename):
"""Rename a table.
The table with the given name is renamed (or moved) to the new name.
"""
t = table(tablename, ack=False)
t.rename(newtablename)
def tableinfo(tablename):
"""Get type info of a table.
It is the same as :func:`table.info`, but without the need to open
the table first.
"""
t = table(tablename, ack=False)
return t.info()
def tablesummary(tablename):
"""Get the summary of a table.
It is the same as :func:`table.summary`, but without the need to open
the table first.
"""
t = table(tablename, ack=False)
t.summary()
def tablestructure(tablename, dataman=True, column=True, subtable=False,
sort=False):
"""Print the structure of a table.
It is the same as :func:`table.showstructure`, but without the need to open
the table first.
"""
t = table(tablename, ack=False)
print(t.showstructure(dataman, column, subtable, sort))
|