1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
|
# Copyright DataStax, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Inserts multiple rows in a table asynchronously, limiting the amount
of parallel requests with a Queue.
"""
import time
import uuid
import queue
from cassandra.cluster import Cluster
CONCURRENCY_LEVEL = 32
TOTAL_QUERIES = 10000
cluster = Cluster()
session = cluster.connect()
session.execute(("CREATE KEYSPACE IF NOT EXISTS examples "
"WITH replication = {'class': 'SimpleStrategy', 'replication_factor': '1' }"))
session.execute("USE examples")
session.execute("CREATE TABLE IF NOT EXISTS tbl_sample_kv (id uuid, value text, PRIMARY KEY (id))")
prepared_insert = session.prepare("INSERT INTO tbl_sample_kv (id, value) VALUES (?, ?)")
def clear_queue():
while True:
try:
futures.get_nowait().result()
except queue.Empty:
break
start = time.time()
futures = queue.Queue(maxsize=CONCURRENCY_LEVEL)
# Chunking way, when the max concurrency level is reached, we
# wait the current chunk of requests to finish
for i in range(TOTAL_QUERIES):
future = session.execute_async(prepared_insert, (uuid.uuid4(), str(i)))
try:
futures.put_nowait(future)
except queue.Full:
clear_queue()
futures.put_nowait(future)
clear_queue()
end = time.time()
print("Finished executing {} queries with a concurrency level of {} in {:.2f} seconds.".
format(TOTAL_QUERIES, CONCURRENCY_LEVEL, (end-start)))
|