1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
"""Test the various Cython-based message deserializers"""
# Based on test_custom_protocol_handler.py
import unittest
from itertools import count
from cassandra.cluster import ExecutionProfile, EXEC_PROFILE_DEFAULT
from cassandra.concurrent import execute_concurrent_with_args
from cassandra.cython_deps import HAVE_CYTHON, HAVE_NUMPY
from cassandra.protocol import ProtocolHandler, LazyProtocolHandler, NumpyProtocolHandler
from cassandra.query import tuple_factory
from tests import VERIFY_CYTHON
from tests.integration import use_singledc, notprotocolv1, \
drop_keyspace_shutdown_cluster, BasicSharedKeyspaceUnitTestCase, greaterthancass21, TestCluster
from tests.integration.datatype_utils import update_datatypes
from tests.integration.standard.utils import (
create_table_with_all_types, get_all_primitive_params, get_primitive_datatypes)
from tests.unit.cython.utils import cythontest, numpytest
def setup_module():
use_singledc()
update_datatypes()
class CythonProtocolHandlerTest(unittest.TestCase):
N_ITEMS = 10
@classmethod
def setUpClass(cls):
cls.cluster = TestCluster()
cls.session = cls.cluster.connect()
cls.session.execute("CREATE KEYSPACE testspace WITH replication = "
"{ 'class' : 'SimpleStrategy', 'replication_factor': '1'}")
cls.session.set_keyspace("testspace")
cls.colnames = create_table_with_all_types("test_table", cls.session, cls.N_ITEMS)
@classmethod
def tearDownClass(cls):
drop_keyspace_shutdown_cluster("testspace", cls.session, cls.cluster)
@cythontest
def test_cython_parser(self):
"""
Test Cython-based parser that returns a list of tuples
"""
verify_iterator_data(self.assertEqual, get_data(ProtocolHandler))
@cythontest
def test_cython_lazy_parser(self):
"""
Test Cython-based parser that returns an iterator of tuples
"""
verify_iterator_data(self.assertEqual, get_data(LazyProtocolHandler))
@numpytest
def test_cython_lazy_results_paged(self):
"""
Test Cython-based parser that returns an iterator, over multiple pages
"""
# arrays = { 'a': arr1, 'b': arr2, ... }
cluster = TestCluster(
execution_profiles={EXEC_PROFILE_DEFAULT: ExecutionProfile(row_factory=tuple_factory)}
)
session = cluster.connect(keyspace="testspace")
session.client_protocol_handler = LazyProtocolHandler
session.default_fetch_size = 2
self.assertLess(session.default_fetch_size, self.N_ITEMS)
results = session.execute("SELECT * FROM test_table")
self.assertTrue(results.has_more_pages)
self.assertEqual(verify_iterator_data(self.assertEqual, results), self.N_ITEMS) # make sure we see all rows
cluster.shutdown()
@notprotocolv1
@numpytest
def test_numpy_parser(self):
"""
Test Numpy-based parser that returns a NumPy array
"""
# arrays = { 'a': arr1, 'b': arr2, ... }
result = get_data(NumpyProtocolHandler)
self.assertFalse(result.has_more_pages)
self._verify_numpy_page(result[0])
@notprotocolv1
@numpytest
def test_numpy_results_paged(self):
"""
Test Numpy-based parser that returns a NumPy array
"""
# arrays = { 'a': arr1, 'b': arr2, ... }
cluster = TestCluster(
execution_profiles={EXEC_PROFILE_DEFAULT: ExecutionProfile(row_factory=tuple_factory)}
)
session = cluster.connect(keyspace="testspace")
session.client_protocol_handler = NumpyProtocolHandler
session.default_fetch_size = 2
expected_pages = (self.N_ITEMS + session.default_fetch_size - 1) // session.default_fetch_size
self.assertLess(session.default_fetch_size, self.N_ITEMS)
results = session.execute("SELECT * FROM test_table")
self.assertTrue(results.has_more_pages)
for count, page in enumerate(results, 1):
self.assertIsInstance(page, dict)
for colname, arr in page.items():
if count <= expected_pages:
self.assertGreater(len(arr), 0, "page count: %d" % (count,))
self.assertLessEqual(len(arr), session.default_fetch_size)
else:
# we get one extra item out of this iteration because of the way NumpyParser returns results
# The last page is returned as a dict with zero-length arrays
self.assertEqual(len(arr), 0)
self.assertEqual(self._verify_numpy_page(page), len(arr))
self.assertEqual(count, expected_pages + 1) # see note about extra 'page' above
cluster.shutdown()
@numpytest
def test_cython_numpy_are_installed_valid(self):
"""
Test to validate that cython and numpy are installed correctly
@since 3.3.0
@jira_ticket PYTHON-543
@expected_result Cython and Numpy should be present
@test_category configuration
"""
if VERIFY_CYTHON:
self.assertTrue(HAVE_CYTHON)
self.assertTrue(HAVE_NUMPY)
def _verify_numpy_page(self, page):
colnames = self.colnames
datatypes = get_primitive_datatypes()
for colname, datatype in zip(colnames, datatypes):
arr = page[colname]
self.match_dtype(datatype, arr.dtype)
return verify_iterator_data(self.assertEqual, arrays_to_list_of_tuples(page, colnames))
def match_dtype(self, datatype, dtype):
"""Match a string cqltype (e.g. 'int' or 'blob') with a numpy dtype"""
if datatype == 'smallint':
self.match_dtype_props(dtype, 'i', 2)
elif datatype == 'int':
self.match_dtype_props(dtype, 'i', 4)
elif datatype in ('bigint', 'counter'):
self.match_dtype_props(dtype, 'i', 8)
elif datatype == 'float':
self.match_dtype_props(dtype, 'f', 4)
elif datatype == 'double':
self.match_dtype_props(dtype, 'f', 8)
else:
self.assertEqual(dtype.kind, 'O', msg=(dtype, datatype))
def match_dtype_props(self, dtype, kind, size, signed=None):
self.assertEqual(dtype.kind, kind, msg=dtype)
self.assertEqual(dtype.itemsize, size, msg=dtype)
def arrays_to_list_of_tuples(arrays, colnames):
"""Convert a dict of arrays (as given by the numpy protocol handler) to a list of tuples"""
first_array = arrays[colnames[0]]
return [tuple(arrays[colname][i] for colname in colnames)
for i in range(len(first_array))]
def get_data(protocol_handler):
"""
Get data from the test table.
"""
cluster = TestCluster(
execution_profiles={EXEC_PROFILE_DEFAULT: ExecutionProfile(row_factory=tuple_factory)}
)
session = cluster.connect(keyspace="testspace")
# use our custom protocol handler
session.client_protocol_handler = protocol_handler
results = session.execute("SELECT * FROM test_table")
cluster.shutdown()
return results
def verify_iterator_data(assertEqual, results):
"""
Check the result of get_data() when this is a list or
iterator of tuples
"""
count = 0
for count, result in enumerate(results, 1):
params = get_all_primitive_params(result[0])
assertEqual(len(params), len(result),
msg="Not the right number of columns?")
for expected, actual in zip(params, result):
assertEqual(actual, expected)
return count
class NumpyNullTest(BasicSharedKeyspaceUnitTestCase):
@classmethod
def setUpClass(cls):
cls.common_setup(1, execution_profiles={EXEC_PROFILE_DEFAULT: ExecutionProfile(row_factory=tuple_factory)})
@numpytest
@greaterthancass21
def test_null_types(self):
"""
Test to validate that the numpy protocol handler can deal with null values.
@since 3.3.0
- updated 3.6.0: now numeric types used masked array
@jira_ticket PYTHON-550
@expected_result Numpy can handle non mapped types' null values.
@test_category data_types:serialization
"""
s = self.session
s.client_protocol_handler = NumpyProtocolHandler
table = "%s.%s" % (self.keyspace_name, self.function_table_name)
create_table_with_all_types(table, s, 10)
begin_unset = max(s.execute('select primkey from %s' % (table,))[0]['primkey']) + 1
keys_null = range(begin_unset, begin_unset + 10)
# scatter some emptry rows in here
insert = "insert into %s (primkey) values (%%s)" % (table,)
execute_concurrent_with_args(s, insert, ((k,) for k in keys_null))
result = s.execute("select * from %s" % (table,))[0]
from numpy.ma import masked, MaskedArray
result_keys = result.pop('primkey')
mapped_index = [v[1] for v in sorted(zip(result_keys, count()))]
had_masked = had_none = False
for col_array in result.values():
# these have to be different branches (as opposed to comparing against an 'unset value')
# because None and `masked` have different identity and equals semantics
if isinstance(col_array, MaskedArray):
had_masked = True
[self.assertIsNot(col_array[i], masked) for i in mapped_index[:begin_unset]]
[self.assertIs(col_array[i], masked) for i in mapped_index[begin_unset:]]
else:
had_none = True
[self.assertIsNotNone(col_array[i]) for i in mapped_index[:begin_unset]]
[self.assertIsNone(col_array[i]) for i in mapped_index[begin_unset:]]
self.assertTrue(had_masked)
self.assertTrue(had_none)
|