1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
|
# Built-in Hooks
```{currentmodule} cattrs
```
_cattrs_ converters come with with a large repertoire of un/structuring hooks built-in.
As always, complex hooks compose with simpler ones.
## Primitive Values
### `int`, `float`, `str`, `bytes`
When structuring, use any of these types to coerce the object to that type.
```{doctest}
>>> cattrs.structure(1, str)
'1'
>>> cattrs.structure("1", float)
1.0
```
In case the conversion isn't possible the expected exceptions will be propagated out.
The particular exceptions are the same as if you'd tried to do the coercion directly.
```python
>>> cattrs.structure("not-an-int", int)
Traceback (most recent call last):
...
ValueError: invalid literal for int() with base 10: 'not-an-int'
```
Coercion is performed for performance and compatibility reasons.
Any of these hooks can be overriden if pure validation is required instead.
```{doctest}
>>> c = Converter()
>>> @c.register_structure_hook
... def validate(value, type) -> int:
... if not isinstance(value, type):
... raise ValueError(f'{value!r} not an instance of {type}')
... return value
>>> c.structure("1", int)
Traceback (most recent call last):
...
ValueError: '1' not an instance of <class 'int'>
```
When unstructuring, these types are passed through unchanged.
### Enums
Enums are structured by their values, and unstructured to their values.
This works even for complex values, like tuples.
```{doctest}
>>> @unique
... class CatBreed(Enum):
... SIAMESE = "siamese"
... MAINE_COON = "maine_coon"
... SACRED_BIRMAN = "birman"
>>> cattrs.structure("siamese", CatBreed)
<CatBreed.SIAMESE: 'siamese'>
>>> cattrs.unstructure(CatBreed.SIAMESE)
'siamese'
```
Again, in case of errors, the expected exceptions are raised.
### `pathlib.Path`
[`pathlib.Path`](https://docs.python.org/3/library/pathlib.html#pathlib.Path) objects are structured using their string value,
and unstructured into their string value.
```{doctest}
>>> from pathlib import Path
>>> cattrs.structure("/root", Path)
PosixPath('/root')
>>> cattrs.unstructure(Path("/root"))
'/root'
```
In case the conversion isn't possible, the resulting exception is propagated out.
```{versionadded} 23.1.0
```
## Collections and Related Generics
### Optionals
`Optional` primitives and collections are supported out of the box.
[PEP 604](https://peps.python.org/pep-0604/) optionals (`T | None`) are also supported on Python 3.10 and later.
```{doctest}
>>> cattrs.structure(None, int)
Traceback (most recent call last):
...
TypeError: int() argument must be a string, a bytes-like object or a number, not 'NoneType'
>>> print(cattrs.structure(None, int | None))
None
```
Bare `Optional` s (non-parameterized, just `Optional`, as opposed to `Optional[str]`) aren't supported; `Optional[Any]` should be used instead.
`Optionals` handling can be customized using {meth}`register_structure_hook` and {meth}`register_unstructure_hook`.
```{doctest}
>>> converter = Converter()
>>> @converter.register_structure_hook
... def hook(val: Any, type: Any) -> str | None:
... if val in ("", None):
... return None
... return str(val)
...
>>> print(converter.structure("", str | None))
None
```
### Lists
Lists can be structured from any iterable object.
Types converting to lists are:
- `collections.abc.MutableSequence[T]`
- `typing.List[T]`
- `list[T]`
In all cases, a new list will be returned, so this operation can be used to copy an iterable into a list.
A bare type, for example `Sequence` instead of `Sequence[int]`, is equivalent to `Sequence[Any]`.
```{doctest}
>>> cattrs.structure((1, 2, 3), MutableSequence[int])
[1, 2, 3]
```
When unstructuring, lists are copied and their contents are handled according to their inner type.
A useful use case for unstructuring collections is to create a deep copy of a complex or recursive collection.
```{versionchanged} 25.2.0
Sequences are no longer structured into lists by default, but tuples.
```
### Dictionaries
Dictionaries can be produced from other mapping objects.
More precisely, the unstructured object must expose an [`items()`](https://docs.python.org/3/library/stdtypes.html#dict.items) method producing an iterable of key-value tuples,
and be able to be passed to the `dict` constructor as an argument.
Types converting to dictionaries are:
- `dict[K, V]` and `typing.Dict[K, V]`
- `collections.abc.MutableMapping[K, V]`
- `collections.abc.Mapping[K, V]`
In all cases, a new dict will be returned, so this operation can be used to copy a mapping into a dict.
Any type parameters set to `typing.Any` will be passed through unconverted.
If both type parameters are absent, they will be treated as `Any` too.
```{doctest}
>>> from collections import OrderedDict
>>> cattrs.structure(OrderedDict([(1, 2), (3, 4)]), dict)
{1: 2, 3: 4}
```
Both keys and values are converted.
```{doctest}
>>> cattrs.structure({1: None, 2: 2.0}, dict[str, Optional[int]])
{'1': None, '2': 2}
```
### defaultdicts
[`defaultdicts`](https://docs.python.org/3/library/collections.html#collections.defaultdict)
can be structured by default if they can be initialized using their value type hint.
Supported types are:
- `collections.defaultdict[K, V]`
- `typing.DefaultDict[K, V]`
For example, `defaultdict[str, int]` works since _cattrs_ will initialize it with `defaultdict(int)`.
This also means `defaultdicts` without key and value annotations (bare `defaultdicts`) cannot be structured by default.
`defaultdicts` with arbitrary default factories can be structured by using {meth}`defaultdict_structure_factory <cattrs.cols.defaultdict_structure_factory>`:
```{doctest}
>>> from collections import defaultdict
>>> from cattrs.cols import defaultdict_structure_factory
>>> converter = Converter()
>>> hook = defaultdict_structure_factory(
... defaultdict[str, int],
... converter,
... default_factory=lambda: 1
... )
>>> hook({"key": 1})
defaultdict(<function <lambda> at ...>, {'key': 1})
```
`defaultdicts` are unstructured into plain dictionaries.
```{note}
`defaultdicts` are not supported by the BaseConverter.
```
```{versionadded} 24.2.0
```
### Virtual Subclasses of [`abc.Mapping`](https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping) and [`abc.MutableMapping`](https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping)
If a class declares itself a virtual subclass of `collections.abc.Mapping` or `collections.abc.MutableMapping` and its initializer accepts a dictionary,
_cattrs_ will be able to structure it by default.
### Homogeneous and Heterogeneous Tuples
Homogeneous and heterogeneous tuples can be structured from iterable objects.
Heterogeneous tuples require an iterable with the number of elements matching the number of type parameters exactly.
Heterogenous tuples use:
- `typing.Tuple[A, B, C, D]`
- `tuple[A, B, C, D]`
Homogeneous tuples use:
- `collections.abc.Sequence[T]`
- `typing.Tuple[T, ...]`
- `tuple[T, ...]`
In all cases a tuple will be produced.
Any type parameters set to `typing.Any` will be passed through unconverted.
```{doctest}
>>> cattrs.structure([1, 2, 3], tuple[int, str, float])
(1, '2', 3.0)
```
When unstructuring, heterogeneous tuples unstructure into tuples since it's faster and virtually all serialization libraries support tuples natively.
```{seealso}
[Support for typing.NamedTuple.](#typingnamedtuple)
```
```{note}
Structuring heterogenous tuples are not supported by the BaseConverter.
```
```{versionchanged} 25.2.0
Sequences are now structured into tuples.
```
### Deques
Deques can be structured from any iterable object.
Types converting to deques are:
- `typing.Deque[T]`
- `collections.deque[T]`
In all cases, a new **unbounded** deque (`maxlen=None`) will be produced, so this operation can be used to copy an iterable into a deque.
If you want to convert into bounded `deque`, registering a custom structuring hook is a good approach.
```{doctest}
>>> from collections import deque
>>> cattrs.structure((1, 2, 3), deque[int])
deque([1, 2, 3])
```
Deques are unstructured into lists, or into deques when using the {class}`BaseConverter`.
```{versionadded} 23.1.0
```
### Sets and Frozensets
Sets and frozensets can be structured from any iterable object.
Types converting to sets are:
- `collections.abc.MutableSet[T]`
- `set[T]`
- `typing.Set[T]` (deprecated since Python 3.9, use `set[T]` instead)
Types converting to frozensets are:
- `collections.abc.Set[T]`
- `frozenset[T]`
- `typing.FrozenSet[T]` (deprecated since Python 3.9, use `frozenset[T]` instead)
In all cases, a new set or frozenset will be returned.
A bare type, for example `MutableSet` instead of `MutableSet[int]`, is equivalent to `MutableSet[Any]`.
```{doctest}
>>> cattrs.structure([1, 2, 3, 4], set)
{1, 2, 3, 4}
```
Sets and frozensets are unstructured into the matching class.
```{versionchanged} 25.3.0
Abstract sets are now structured into frozensets instead of sets.
```
### Typed Dicts
[TypedDicts](https://peps.python.org/pep-0589/) can be structured from mapping objects, usually dictionaries.
```{doctest}
>>> from typing import TypedDict
>>> class MyTypedDict(TypedDict):
... a: int
>>> cattrs.structure({"a": "1"}, MyTypedDict)
{'a': 1}
```
Both [_total_ and _non-total_](https://peps.python.org/pep-0589/#totality) TypedDicts are supported, and inheritance between any combination works.
Generic TypedDicts work on Python 3.11 and later, since that is the first Python version that supports them in general.
[`typing.Required` and `typing.NotRequired`](https://peps.python.org/pep-0655/) are supported.
:::{caution}
If `from __future__ import annotations` is used or if annotations are given as strings, `Required` and `NotRequired` are ignored by cattrs.
See [note in the Python documentation](https://docs.python.org/3/library/typing.html#typing.TypedDict.__optional_keys__).
:::
[Similar to _attrs_ classes](customizing.md#using-cattrsgen-hook-factories), un/structuring can be customized using {meth}`cattrs.gen.typeddicts.make_dict_structure_fn` and {meth}`cattrs.gen.typeddicts.make_dict_unstructure_fn`.
```{doctest}
>>> from typing import TypedDict
>>> from cattrs import Converter
>>> from cattrs.gen import override
>>> from cattrs.gen.typeddicts import make_dict_structure_fn
>>> class MyTypedDict(TypedDict):
... a: int
... b: int
>>> c = Converter()
>>> c.register_structure_hook(
... MyTypedDict,
... make_dict_structure_fn(
... MyTypedDict,
... c,
... a=override(rename="a-with-dash")
... )
... )
>>> c.structure({"a-with-dash": 1, "b": 2}, MyTypedDict)
{'b': 2, 'a': 1}
```
TypedDicts unstructure into dictionaries, potentially unchanged (depending on the exact field types and registered hooks).
```{doctest}
>>> from typing import TypedDict
>>> from datetime import datetime, timezone
>>> from cattrs import Converter
>>> class MyTypedDict(TypedDict):
... a: datetime
>>> c = Converter()
>>> c.register_unstructure_hook(datetime, lambda d: d.timestamp())
>>> c.unstructure({"a": datetime(1970, 1, 1, tzinfo=timezone.utc)}, unstructure_as=MyTypedDict)
{'a': 0.0}
```
```{versionadded} 23.1.0
```
## _attrs_ Classes and Dataclasses
_attrs_ classes and dataclasses work out of the box.
The fields require type annotations (even if static type-checking is not being used), or they will be treated as [](#typingany).
When structuring, given a mapping `d` and class `A`, _cattrs_ will instantiate `A` with `d` unpacked.
```{doctest}
>>> @define
... class A:
... a: int
... b: int
>>> cattrs.structure({'a': 1, 'b': '2'}, A)
A(a=1, b=2)
```
Tuples can be structured into classes using {meth}`structure_attrs_fromtuple() <cattrs.structure_attrs_fromtuple>` (`fromtuple` as in the opposite of [`attrs.astuple`](https://www.attrs.org/en/stable/api.html#attrs.astuple) and {meth}`BaseConverter.unstructure_attrs_astuple`).
```{doctest}
>>> @define
... class A:
... a: str
... b: int
>>> cattrs.structure_attrs_fromtuple(['string', '2'], A)
A(a='string', b=2)
```
Loading from tuples can be made the default by creating a new {class}`Converter <cattrs.Converter>` with `unstruct_strat=cattr.UnstructureStrategy.AS_TUPLE`.
```{doctest}
>>> converter = cattrs.Converter(unstruct_strat=cattr.UnstructureStrategy.AS_TUPLE)
>>> @define
... class A:
... a: str
... b: int
>>> converter.structure(['string', '2'], A)
A(a='string', b=2)
```
Structuring from tuples can also be made the default for specific classes only by registering a hook the usual way.
```{doctest}
>>> converter = cattrs.Converter()
>>> @define
... class A:
... a: str
... b: int
>>> converter.register_structure_hook(A, converter.structure_attrs_fromtuple)
```
### Generics
Generic _attrs_ classes and dataclasses are fully supported, both using `typing.Generic` and [PEP 695](https://peps.python.org/pep-0695/).
```python
>>> @define
... class A[T]:
... a: T
>>> cattrs.structure({"a": "1"}, A[int])
A(a=1)
```
### Using Attribute Types and Converters
By default, {meth}`structure() <cattrs.BaseConverter.structure>` will use hooks registered using {meth}`register_structure_hook() <cattrs.BaseConverter.register_structure_hook>`
to convert values to the attribute type, and proceed to invoking any converters registered on attributes with `field`.
```{doctest}
>>> from ipaddress import IPv4Address, ip_address
>>> converter = cattrs.Converter()
# Note: register_structure_hook has not been called, so this will fallback to 'ip_address'
>>> @define
... class A:
... a: IPv4Address = field(converter=ip_address)
>>> converter.structure({'a': '127.0.0.1'}, A)
A(a=IPv4Address('127.0.0.1'))
```
Priority is still given to hooks registered with {meth}`register_structure_hook() <cattrs.BaseConverter.register_structure_hook>`,
but this priority can be inverted by setting `prefer_attrib_converters` to `True`.
```{doctest}
>>> converter = cattrs.Converter(prefer_attrib_converters=True)
>>> @define
... class A:
... a: int = field(converter=lambda v: int(v) + 5)
>>> converter.structure({'a': '10'}, A)
A(a=15)
```
```{seealso}
If an _attrs_ or dataclass class uses inheritance and as such has one or several subclasses, it can be structured automatically to its exact subtype by using the [include subclasses](strategies.md#include-subclasses-strategy) strategy.
```
## Unions
Unions of `NoneType` and a single other type (also known as optionals) are supported by a [special case](#optionals).
### Automatic Disambiguation
_cattrs_ includes an opinionated strategy for automatically handling unions of _attrs_ classes; see [](unions.md#default-union-strategy) for details.
When unstructuring these kinds of unions, each union member will be unstructured according to the hook for that type.
### Unions of Simple Types
_cattrs_ comes with the [](strategies.md#union-passthrough), which enables converters to structure unions of many primitive types and literals.
This strategy can be applied to any converter, and is pre-applied to all [preconf](preconf.md) converters according to their underlying protocols.
## Special Typing Forms
### `typing.Any`
When structuring, use `typing.Any` to avoid applying any conversions to the object you're structuring; it will simply be passed through.
```{doctest}
>>> cattrs.structure(1, Any)
1
>>> d = {1: 1}
>>> cattrs.structure(d, Any) is d
True
```
When unstructuring, `typing.Any` will make the value be unstructured according to its runtime class.
```{versionchanged} 24.1.0
Previously, the unstructuring rules for `Any` were underspecified, leading to inconsistent behavior.
```
```{versionchanged} 24.1.0
`typing_extensions.Any` is now also supported.
```
### `typing.Literal`
When structuring, [PEP 586](https://peps.python.org/pep-0586/) literals are validated to be in the allowed set of values.
```{doctest}
>>> from typing import Literal
>>> cattrs.structure(1, Literal[1, 2])
1
```
When unstructuring, literals are passed through.
```{versionadded} 1.7.0
```
### `typing.NamedTuple`
Named tuples with type hints (created from [`typing.NamedTuple`](https://docs.python.org/3/library/typing.html#typing.NamedTuple)) are supported.
Named tuples are un/structured using tuples or lists by default.
The {mod}`cattrs.cols` module contains hook factories for un/structuring named tuples using dictionaries instead,
[see here for details](customizing.md#customizing-named-tuples).
```{versionadded} 24.1.0
```
### `typing.Final`
[PEP 591](https://peps.python.org/pep-0591/) Final attribute types (`Final[int]`) are supported and handled according to the inner type (in this case, `int`).
```{versionadded} 23.1.0
```
### `typing.Annotated`
[PEP 593](https://www.python.org/dev/peps/pep-0593/) annotations (`typing.Annotated[type, ...]`) are supported and are handled using the first type present in the annotated type.
```{versionadded} 1.4.0
```
### Type Aliases
[Type aliases](https://docs.python.org/3/library/typing.html#type-aliases) are supported on Python 3.12+ and are handled according to the rules for their underlying type.
Their hooks can also be overriden using [](customizing.md#predicate-hooks).
```{warning}
Type aliases using [`typing.TypeAlias`](https://docs.python.org/3/library/typing.html#typing.TypeAlias) aren't supported since there is no way at runtime to distinguish them from their underlying types.
```
```python
>>> from datetime import datetime, UTC
>>> type IsoDate = datetime
>>> converter = cattrs.Converter()
>>> converter.register_structure_hook_func(
... lambda t: t is IsoDate, lambda v, _: datetime.fromisoformat(v)
... )
>>> converter.register_unstructure_hook_func(
... lambda t: t is IsoDate, lambda v: v.isoformat()
... )
>>> converter.structure("2022-01-01", IsoDate)
datetime.datetime(2022, 1, 1, 0, 0)
>>> converter.unstructure(datetime.now(UTC), unstructure_as=IsoDate)
'2023-11-20T23:10:46.728394+00:00'
```
```{versionadded} 24.1.0
```
### `typing.NewType`
[NewTypes](https://docs.python.org/3/library/typing.html#newtype) are supported and are handled according to the rules for their underlying type.
Their hooks can also be overriden using {meth}`Converter.register_structure_hook() <cattrs.BaseConverter.register_structure_hook>`.
```{doctest}
>>> from typing import NewType
>>> from datetime import datetime
>>> IsoDate = NewType("IsoDate", datetime)
>>> converter = cattrs.Converter()
>>> converter.register_structure_hook(IsoDate, lambda v, _: datetime.fromisoformat(v))
>>> converter.structure("2022-01-01", IsoDate)
datetime.datetime(2022, 1, 1, 0, 0)
```
```{versionadded} 22.2.0
```
### `typing.Protocol`
[Protocols](https://peps.python.org/pep-0544/) cannot be structured by default and so require custom hooks.
Protocols are unstructured according to the actual runtime type of the value.
```{versionadded} 1.9.0
```
### `typing.Self`
Attributes annotated using [the Self type](https://docs.python.org/3/library/typing.html#typing.Self) are supported in _attrs_ classes, dataclasses, TypedDicts and NamedTuples
(when using [the dict un/structure factories](customizing.md#customizing-named-tuples)).
```{doctest}
>>> from typing import Self
>>> @define
... class LinkedListNode:
... element: int
... next: Self | None = None
>>> cattrs.unstructure(LinkedListNode(1, LinkedListNode(2, None)))
{'element': 1, 'next': {'element': 2, 'next': None}}
>>> cattrs.structure({'element': 1, 'next': {'element': 2, 'next': None}}, LinkedListNode)
LinkedListNode(element=1, next=LinkedListNode(element=2, next=None))
```
```{note}
Attributes annotated with `typing.Self` are not supported by the BaseConverter, as this is too complex for it.
```
```{versionadded} 25.1.0
```
|