1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
|
"""Strategies for attributes without types and accompanying classes."""
import keyword
import string
from collections.abc import Iterable
from enum import Enum
from typing import (
Any,
Deque,
Dict,
List,
Mapping,
MutableMapping,
MutableSequence,
MutableSet,
Sequence,
Set,
Tuple,
)
from attr import attrib
from attr._make import _CountingAttr
from attrs import NOTHING, AttrsInstance, Factory, make_class
from hypothesis import strategies as st
from hypothesis.strategies import SearchStrategy, booleans
from typing_extensions import TypeAlias
PosArg = Any
PosArgs = tuple[PosArg]
KwArgs = dict[str, Any]
AttrsAndArgs: TypeAlias = tuple[type[AttrsInstance], PosArgs, KwArgs]
primitive_strategies = st.sampled_from(
[
(st.integers(), int),
(st.floats(allow_nan=False), float),
(st.text(), str),
(st.binary(), bytes),
]
)
@st.composite
def enums_of_primitives(draw: st.DrawFn) -> Enum:
"""Generate enum classes with primitive values."""
names = draw(
st.sets(st.text(min_size=1).filter(lambda s: not s.endswith("_")), min_size=1)
)
n = len(names)
vals = draw(
st.one_of(
st.sets(
st.one_of(
st.integers(), st.floats(allow_nan=False), st.text(min_size=1)
),
min_size=n,
max_size=n,
)
)
)
return Enum("HypEnum", list(zip(names, vals)))
list_types = st.sampled_from([List, Sequence, MutableSequence])
deque_types = st.sampled_from([Deque, Sequence, MutableSequence])
set_types = st.sampled_from([Set, MutableSet])
@st.composite
def lists_of_primitives(draw):
"""Generate a strategy that yields tuples of list of primitives and types.
For example, a sample value might be ([1,2], List[int]).
"""
prim_strat, t = draw(primitive_strategies)
list_t = draw(list_types.map(lambda list_t: list_t[t]) | list_types)
return draw(st.lists(prim_strat)), list_t
@st.composite
def deques_of_primitives(draw):
"""Generate a strategy that yields tuples of list of primitives and types.
For example, a sample value might be ([1,2], Deque[int]).
"""
prim_strat, t = draw(primitive_strategies)
deque_t = draw(deque_types.map(lambda deque_t: deque_t[t]) | deque_types)
return draw(st.lists(prim_strat)), deque_t
@st.composite
def mut_sets_of_primitives(draw):
"""A strategy that generates mutable sets of primitives."""
prim_strat, t = draw(primitive_strategies)
set_t = draw(set_types.map(lambda set_t: set_t[t]) | set_types)
return draw(st.sets(prim_strat)), set_t
@st.composite
def frozen_sets_of_primitives(draw):
"""A strategy that generates frozen sets of primitives."""
prim_strat, t = draw(primitive_strategies)
set_t = draw(st.just(Set) | st.just(Set[t]))
return frozenset(draw(st.sets(prim_strat))), set_t
h_tuple_types = st.sampled_from([Tuple, Sequence])
h_tuples_of_primitives = primitive_strategies.flatmap(
lambda e: st.tuples(
st.lists(e[0]),
st.one_of(st.sampled_from([Tuple[e[1], ...], Sequence[e[1]]]), h_tuple_types),
)
).map(lambda e: (tuple(e[0]), e[1]))
dict_types = st.sampled_from([Dict, MutableMapping, Mapping])
seqs_of_primitives = st.one_of(lists_of_primitives(), h_tuples_of_primitives)
deque_seqs_of_primitives = st.one_of(deques_of_primitives(), h_tuples_of_primitives)
sets_of_primitives = st.one_of(mut_sets_of_primitives(), frozen_sets_of_primitives())
def create_generic_dict_type(type1, type2):
"""Create a strategy for generating parameterized dict types."""
return st.one_of(
dict_types,
dict_types.map(lambda t: t[type1, type2]),
dict_types.map(lambda t: t[Any, type2]),
dict_types.map(lambda t: t[type1, Any]),
)
def create_dict_and_type(tuple_of_strats):
"""Map two primitive strategies into a strategy for dict and type."""
(prim_strat_1, type_1), (prim_strat_2, type_2) = tuple_of_strats
return st.tuples(
st.dictionaries(prim_strat_1, prim_strat_2),
create_generic_dict_type(type_1, type_2),
)
dicts_of_primitives = st.tuples(primitive_strategies, primitive_strategies).flatmap(
create_dict_and_type
)
def gen_attr_names() -> Iterable[str]:
"""
Generate names for attributes, 'a'...'z', then 'aa'...'zz'.
~702 different attribute names should be enough in practice.
Some short strings (such as 'as') are keywords, so we skip them.
Every second attribute name is private (starts with an underscore).
"""
lc = string.ascii_lowercase
has_underscore = False
for c in lc:
yield c if not has_underscore else "_" + c
has_underscore = not has_underscore
for outer in lc:
for inner in lc:
res = outer + inner
if keyword.iskeyword(res):
continue
yield outer + inner
def _create_hyp_class(
attrs_and_strategy: list[tuple[_CountingAttr, st.SearchStrategy[PosArgs]]],
frozen=None,
) -> SearchStrategy[AttrsAndArgs]:
"""
A helper function for Hypothesis to generate attrs classes.
The result is a tuple: an attrs class, a tuple of values to
instantiate it, and a kwargs dict for kw-only attributes.
"""
def key(t):
return (t[0].default is not NOTHING, t[0].kw_only or False)
attrs_and_strat = sorted(attrs_and_strategy, key=key)
attrs = [a[0] for a in attrs_and_strat]
for i, a in enumerate(attrs):
a.counter = i
vals = tuple((a[1]) for a in attrs_and_strat if not a[0].kw_only)
kwargs = {}
for attr_name, attr_and_strat in zip(gen_attr_names(), attrs_and_strat):
if attr_and_strat[0].kw_only:
if attr_name.startswith("_"):
attr_name = attr_name[1:]
kwargs[attr_name] = attr_and_strat[1]
return st.tuples(
st.builds(
lambda f: make_class(
"HypClass", dict(zip(gen_attr_names(), attrs)), frozen=f
),
st.booleans() if frozen is None else st.just(frozen),
),
st.tuples(*vals),
st.fixed_dictionaries(kwargs),
)
def just_class(tup):
nested_cl = tup[1][0]
default = Factory(nested_cl)
combined_attrs = list(tup[0])
combined_attrs.append((attrib(default=default), st.just(nested_cl())))
return _create_hyp_class(combined_attrs)
def just_class_with_type(tup: tuple) -> SearchStrategy[AttrsAndArgs]:
nested_cl = tup[1][0]
def make_with_default(takes_self: bool) -> SearchStrategy[AttrsAndArgs]:
combined_attrs = list(tup[0])
combined_attrs.append(
(
attrib(
default=(
Factory(
nested_cl if not takes_self else lambda _: nested_cl(),
takes_self=takes_self,
)
),
type=nested_cl,
),
st.just(nested_cl()),
)
)
return _create_hyp_class(combined_attrs)
return booleans().flatmap(make_with_default)
def just_frozen_class_with_type(tup):
nested_cl = tup[1][0]
combined_attrs = list(tup[0])
combined_attrs.append(
(attrib(default=nested_cl(), type=nested_cl), st.just(nested_cl()))
)
return _create_hyp_class(combined_attrs)
def list_of_class(tup: tuple) -> SearchStrategy[AttrsAndArgs]:
nested_cl = tup[1][0]
def make_with_default(takes_self: bool) -> SearchStrategy[AttrsAndArgs]:
combined_attrs = list(tup[0])
combined_attrs.append(
(
attrib(
default=(
Factory(lambda: [nested_cl()])
if not takes_self
else Factory(lambda _: [nested_cl()], takes_self=True)
),
type=list[nested_cl],
),
st.just([nested_cl()]),
)
)
return _create_hyp_class(combined_attrs)
return booleans().flatmap(make_with_default)
def list_of_class_with_type(tup: tuple) -> SearchStrategy[AttrsAndArgs]:
nested_cl = tup[1][0]
def make_with_default(takes_self: bool) -> SearchStrategy[AttrsAndArgs]:
default = (
Factory(lambda: [nested_cl()])
if not takes_self
else Factory(lambda _: [nested_cl()], takes_self=True)
)
combined_attrs = list(tup[0])
combined_attrs.append(
(attrib(default=default, type=List[nested_cl]), st.just([nested_cl()]))
)
return _create_hyp_class(combined_attrs)
return booleans().flatmap(make_with_default)
def dict_of_class(tup):
nested_cl = tup[1][0]
default = Factory(lambda: {"cls": nested_cl()})
combined_attrs = list(tup[0])
combined_attrs.append((attrib(default=default), st.just({"cls": nested_cl()})))
return _create_hyp_class(combined_attrs)
def _create_hyp_nested_strategy(
simple_class_strategy: SearchStrategy,
) -> SearchStrategy:
"""
Create a recursive attrs class.
Given a strategy for building (simpler) classes, create and return
a strategy for building classes that have as an attribute:
* just the simpler class
* a list of simpler classes
* a dict mapping the string "cls" to a simpler class.
"""
# A strategy producing tuples of the form ([list of attributes], <given
# class strategy>).
attrs_and_classes = st.tuples(lists_of_attrs(defaults=True), simple_class_strategy)
return (
attrs_and_classes.flatmap(just_class)
| attrs_and_classes.flatmap(just_class_with_type)
| attrs_and_classes.flatmap(list_of_class)
| attrs_and_classes.flatmap(list_of_class_with_type)
| attrs_and_classes.flatmap(dict_of_class)
| attrs_and_classes.flatmap(just_frozen_class_with_type)
)
@st.composite
def bare_attrs(draw, defaults=None, kw_only=None):
"""
Generate a tuple of an attribute and a strategy that yields values
appropriate for that attribute.
"""
default = NOTHING
if defaults is True or (defaults is None and draw(st.booleans())):
default = None
return (
attrib(
default=default, kw_only=draw(st.booleans()) if kw_only is None else kw_only
),
st.just(None),
)
@st.composite
def int_attrs(draw, defaults=None, kw_only=None):
"""
Generate a tuple of an attribute and a strategy that yields ints for that
attribute.
"""
default = NOTHING
if defaults is True or (defaults is None and draw(st.booleans())):
default = draw(st.integers())
return (
attrib(
default=default, kw_only=draw(st.booleans()) if kw_only is None else kw_only
),
st.integers(),
)
@st.composite
def str_attrs(draw, defaults=None, type_annotations=None, kw_only=None):
"""
Generate a tuple of an attribute and a strategy that yields strs for that
attribute.
"""
default = NOTHING
if defaults is True or (defaults is None and draw(st.booleans())):
default = draw(st.text())
if (type_annotations is None and draw(st.booleans())) or type_annotations:
type = str
else:
type = None
return (
attrib(
default=default,
type=type,
kw_only=draw(st.booleans()) if kw_only is None else kw_only,
),
st.text(max_size=5),
)
@st.composite
def float_attrs(draw, defaults=None, kw_only=None):
"""
Generate a tuple of an attribute and a strategy that yields floats for that
attribute.
"""
default = NOTHING
if defaults is True or (defaults is None and draw(st.booleans())):
default = draw(st.floats(allow_nan=False))
return (
attrib(
default=default, kw_only=draw(st.booleans()) if kw_only is None else kw_only
),
st.floats(allow_nan=False),
)
@st.composite
def dict_attrs(draw, defaults=None, kw_only=None):
"""
Generate a tuple of an attribute and a strategy that yields dictionaries
for that attribute. The dictionaries map strings to integers.
"""
default = NOTHING
val_strat = st.dictionaries(keys=st.text(max_size=5), values=st.integers())
if defaults is True or (defaults is None and draw(st.booleans())):
default_val = draw(val_strat)
default = Factory(lambda: default_val)
return (
attrib(
default=default, kw_only=draw(st.booleans()) if kw_only is None else kw_only
),
val_strat,
)
@st.composite
def optional_attrs(draw, defaults=None, kw_only=None):
"""
Generate a tuple of an attribute and a strategy that yields values
for that attribute. The strategy generates optional integers.
"""
default = NOTHING
val_strat = st.integers() | st.none()
if defaults is True or (defaults is None and draw(st.booleans())):
default = draw(val_strat)
return (
attrib(
default=default, kw_only=draw(st.booleans()) if kw_only is None else kw_only
),
val_strat,
)
def simple_attrs(defaults=None, kw_only=None):
return (
bare_attrs(defaults, kw_only=kw_only)
| int_attrs(defaults, kw_only=kw_only)
| str_attrs(defaults, kw_only=kw_only)
| float_attrs(defaults, kw_only=kw_only)
| dict_attrs(defaults, kw_only=kw_only)
| optional_attrs(defaults, kw_only=kw_only)
)
def lists_of_attrs(defaults=None, min_size=0, kw_only=None) -> SearchStrategy[list]:
# Python functions support up to 255 arguments.
return st.lists(
simple_attrs(defaults, kw_only), min_size=min_size, max_size=10
).map(lambda lst: sorted(lst, key=lambda t: t[0]._default is not NOTHING))
def simple_classes(
defaults=None, min_attrs=0, frozen=None, kw_only=None
) -> SearchStrategy:
"""
Return a strategy that yields tuples of simple classes and values to
instantiate them.
"""
return lists_of_attrs(defaults, min_size=min_attrs, kw_only=kw_only).flatmap(
lambda attrs_and_strategy: _create_hyp_class(attrs_and_strategy, frozen=frozen)
)
def nested_classes() -> SearchStrategy[AttrsAndArgs]:
# Ok, so st.recursive works by taking a base strategy (in this case,
# simple_classes) and a special function. This function receives a strategy,
# and returns another strategy (building on top of the base strategy).
return st.recursive(simple_classes(defaults=True), _create_hyp_nested_strategy)
|