File: validation-rules.rst

package info (click to toggle)
python-cerberus 1.3.7-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 7,532 kB
  • sloc: python: 5,239; makefile: 130
file content (947 lines) | stat: -rw-r--r-- 27,991 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
Validation Rules
================

allow_unknown
-------------
This can be used in conjunction with the  `schema (dict)`_ rule
when validating a mapping in order to set the
:attr:`~cerberus.Validator.allow_unknown` property of the validator for the
subdocument.
This rule has precedence over ``purge_unknown``
(see :ref:`purging-unknown-fields`).
For a full elaboration refer to :ref:`this paragraph <allowing-the-unknown>`.

allowed
-------
This rule takes a :class:`py3:collectionsabc.Container` of allowed values.
Validates the target value if the value is in the allowed values.
If the target value is an :term:`iterable`, all its members must be in the
allowed values.

.. doctest::

    >>> v.schema = {'role': {'type': 'list', 'allowed': ['agent', 'client', 'supplier']}}
    >>> v.validate({'role': ['agent', 'supplier']})
    True

    >>> v.validate({'role': ['intern']})
    False
    >>> v.errors
    {'role': ["unallowed values ('intern',)"]}

    >>> v.schema = {'role': {'type': 'string', 'allowed': ['agent', 'client', 'supplier']}}
    >>> v.validate({'role': 'supplier'})
    True

    >>> v.validate({'role': 'intern'})
    False
    >>> v.errors
    {'role': ['unallowed value intern']}

    >>> v.schema = {'a_restricted_integer': {'type': 'integer', 'allowed': [-1, 0, 1]}}
    >>> v.validate({'a_restricted_integer': -1})
    True

    >>> v.validate({'a_restricted_integer': 2})
    False
    >>> v.errors
    {'a_restricted_integer': ['unallowed value 2']}

.. versionchanged:: 0.5.1
   Added support for the ``int`` type.

allof
-----
Validates if *all* of the provided constraints validates the field. See `\*of-rules`_ for details.

.. versionadded:: 0.9

anyof
-----
Validates if *any* of the provided constraints validates the field. See `\*of-rules`_ for details.

.. versionadded:: 0.9

.. _check-with-rule:

check_with
----------
Validates the value of a field by calling either a function or method.

A function must be implemented like the following prototype::

    def functionnname(field, value, error):
        if value is invalid:
            error(field, 'error message')

The ``error`` argument points to the calling validator's ``_error`` method. See
:doc:`customize` on how to submit errors.

Here's an example that tests whether an integer is odd or not:

.. testcode::

    def oddity(field, value, error):
        if not value & 1:
            error(field, "Must be an odd number")

Then, you can validate a value like this:

.. doctest::

    >>> schema = {'amount': {'check_with': oddity}}
    >>> v = Validator(schema)
    >>> v.validate({'amount': 10})
    False
    >>> v.errors
    {'amount': ['Must be an odd number']}

    >>> v.validate({'amount': 9})
    True

If the rule's constraint is a string, the :class:`~cerberus.Validator` instance
must have a method with that name prefixed by ``_check_with_``. See
:ref:`check-with-rule-methods` for an equivalent to the function-based example
above.

The constraint can also be a sequence of these that will be called consecutively. ::

   schema = {'field': {'check_with': (oddity, 'prime number')}}

.. versionchanged:: 1.3
   The rule was renamed from ``validator`` to ``check_with``


contains
--------
This rule validates that the a container object contains all of the defined items.

.. doctest::

    >>> document = {'states': ['peace', 'love', 'inity']}

    >>> schema = {'states': {'contains': 'peace'}}
    >>> v.validate(document, schema)
    True

    >>> schema = {'states': {'contains': 'greed'}}
    >>> v.validate(document, schema)
    False

    >>> schema = {'states': {'contains': ['love', 'inity']}}
    >>> v.validate(document, schema)
    True

    >>> schema = {'states': {'contains': ['love', 'respect']}}
    >>> v.validate(document, schema)
    False


.. _dependencies:

dependencies
------------
This rule allows one to define either a single field name, a sequence of field
names or a :term:`mapping` of field names and a sequence of allowed values as
required in the document if the field defined upon is present in the document.

.. doctest::

   >>> schema = {'field1': {'required': False}, 'field2': {'required': False, 'dependencies': 'field1'}}
   >>> document = {'field1': 7}
   >>> v.validate(document, schema)
   True

   >>> document = {'field2': 7}
   >>> v.validate(document, schema)
   False

   >>> v.errors
   {'field2': ["field 'field1' is required"]}


When multiple field names are defined as dependencies, all of these must be
present in order for the target field to be validated.

.. doctest::

   >>> schema = {'field1': {'required': False}, 'field2': {'required': False},
   ...           'field3': {'required': False, 'dependencies': ['field1', 'field2']}}
   >>> document = {'field1': 7, 'field2': 11, 'field3': 13}
   >>> v.validate(document, schema)
   True

   >>> document = {'field2': 11, 'field3': 13}
   >>> v.validate(document, schema)
   False

   >>> v.errors
   {'field3': ["field 'field1' is required"]}

When a mapping is provided, not only all dependencies must be present,
but also any of their allowed values must be matched.

.. doctest::

   >>> schema = {'field1': {'required': False},
   ...           'field2': {'required': True, 'dependencies': {'field1': ['one', 'two']}}}

   >>> document = {'field1': 'one', 'field2': 7}
   >>> v.validate(document, schema)
   True

   >>> document = {'field1': 'three', 'field2': 7}
   >>> v.validate(document, schema)
   False
   >>> v.errors
   {'field2': ["depends on these values: {'field1': ['one', 'two']}"]}

   >>> # same as using a dependencies list
   >>> document = {'field2': 7}
   >>> v.validate(document, schema)
   False
   >>> v.errors
   {'field2': ["depends on these values: {'field1': ['one', 'two']}"]}


   >>> # one can also pass a single dependency value
   >>> schema = {'field1': {'required': False}, 'field2': {'dependencies': {'field1': 'one'}}}
   >>> document = {'field1': 'one', 'field2': 7}
   >>> v.validate(document, schema)
   True

   >>> document = {'field1': 'two', 'field2': 7}
   >>> v.validate(document, schema)
   False

   >>> v.errors
   {'field2': ["depends on these values: {'field1': 'one'}"]}

Declaring dependencies on subdocument fields with dot-notation is also
supported:

.. doctest::

   >>> schema = {
   ...   'test_field': {'dependencies': ['a_dict.foo', 'a_dict.bar']},
   ...   'a_dict': {
   ...     'type': 'dict',
   ...     'schema': {
   ...       'foo': {'type': 'string'},
   ...       'bar': {'type': 'string'}
   ...     }
   ...   }
   ... }

   >>> document = {'test_field': 'foobar', 'a_dict': {'foo': 'foo'}}
   >>> v.validate(document, schema)
   False

   >>> v.errors
   {'test_field': ["field 'a_dict.bar' is required"]}

When a subdocument is processed the lookup for a field in question starts at
the level of that document. In order to address the processed document as
root level, the declaration has to start with a ``^``. An occurrence of two
initial carets (``^^``) is interpreted as a literal, single ``^`` with no
special meaning.

.. doctest::

   >>> schema = {
   ...   'test_field': {},
   ...   'a_dict': {
   ...     'type': 'dict',
   ...     'schema': {
   ...       'foo': {'type': 'string'},
   ...       'bar': {'type': 'string', 'dependencies': '^test_field'}
   ...     }
   ...   }
   ... }

   >>> document = {'a_dict': {'bar': 'bar'}}
   >>> v.validate(document, schema)
   False

   >>> v.errors
   {'a_dict': [{'bar': ["field '^test_field' is required"]}]}

.. note::
   If you want to extend semantics of the dot-notation, you can
   :doc:`override <customize>` the :meth:`~cerberus.Validator._lookup_field`
   method.

.. note::
   The evaluation of this rule does not consider any constraints defined with
   the :ref:`required` rule.

.. versionchanged:: 1.0.2 Support for absolute addressing with ``^``.

.. versionchanged:: 0.8.1 Support for sub-document fields as dependencies.

.. versionchanged:: 0.8 Support for dependencies as a dictionary.

.. versionadded:: 0.7

empty
-----
If constrained with ``False`` validation of an :term:`iterable` value will fail
if it is empty.
Per default the emptiness of a field isn't checked and is therefore allowed
when the rule isn't defined. But defining it with the constraint ``True`` will
skip the possibly defined rules ``allowed``, ``forbidden``, ``items``,
``minlength``, ``maxlength``, ``regex`` and ``validator`` for that field when
the value is considered empty.

.. doctest::

    >>> schema = {'name': {'type': 'string', 'empty': False}}
    >>> document = {'name': ''}
    >>> v.validate(document, schema)
    False

    >>> v.errors
    {'name': ['empty values not allowed']}

.. versionadded:: 0.0.3

excludes
--------
You can declare fields to excludes others:

.. doctest::

    >>> v = Validator()
    >>> schema = {'this_field': {'type': 'dict',
    ...                          'excludes': 'that_field'},
    ...           'that_field': {'type': 'dict',
    ...                          'excludes': 'this_field'}}
    >>> v.validate({'this_field': {}, 'that_field': {}}, schema)
    False
    >>> v.validate({'this_field': {}}, schema)
    True
    >>> v.validate({'that_field': {}}, schema)
    True
    >>> v.validate({}, schema)
    True


You can require both field to build an exclusive `or`:

.. doctest::

    >>> v = Validator()
    >>> schema = {'this_field': {'type': 'dict',
    ...                          'excludes': 'that_field',
    ...                          'required': True},
    ...           'that_field': {'type': 'dict',
    ...                          'excludes': 'this_field',
    ...                          'required': True}}
    >>> v.validate({'this_field': {}, 'that_field': {}}, schema)
    False
    >>> v.validate({'this_field': {}}, schema)
    True
    >>> v.validate({'that_field': {}}, schema)
    True
    >>> v.validate({}, schema)
    False


You can also pass multiples fields to exclude in a list :

.. doctest::

   >>> schema = {'this_field': {'type': 'dict',
   ...                          'excludes': ['that_field', 'bazo_field']},
   ...           'that_field': {'type': 'dict',
   ...                          'excludes': 'this_field'},
   ...           'bazo_field': {'type': 'dict'}}
   >>> v.validate({'this_field': {}, 'bazo_field': {}}, schema)
   False

forbidden
---------

Opposite to `allowed`_ this validates if a value is any but one of the defined
values:

.. doctest::

   >>> schema = {'user': {'forbidden': ['root', 'admin']}}
   >>> document = {'user': 'root'}
   >>> v.validate(document, schema)
   False

.. versionadded:: 1.0

items
-----

Validates the items of any iterable against a sequence of rules that must
validate each index-correspondent item. The items will only be evaluated if
the given iterable's size matches the definition's. This also applies during
normalization and items of a value are not normalized when the lengths mismatch.

.. doctest::

   >>> schema = {'list_of_values': {
   ...              'type': 'list',
   ...              'items': [{'type': 'string'}, {'type': 'integer'}]}
   ...           }
   >>> document = {'list_of_values': ['hello', 100]}
   >>> v.validate(document, schema)
   True
   >>> document = {'list_of_values': [100, 'hello']}
   >>> v.validate(document, schema)
   False

See `schema (list)`_ rule for dealing with arbitrary length ``list`` types.

.. _keysrules-rule:

keysrules
---------

This rules takes a set of rules as constraint that all keys of a
:term:`mapping` are validated with.

.. doctest::

    >>> schema = {'a_dict': {
    ...               'type': 'dict',
    ...               'keysrules': {'type': 'string', 'regex': '[a-z]+'}}
    ...           }
    >>> document = {'a_dict': {'key': 'value'}}
    >>> v.validate(document, schema)
    True

    >>> document = {'a_dict': {'KEY': 'value'}}
    >>> v.validate(document, schema)
    False

.. versionadded:: 0.9

.. versionchanged:: 1.0
   Renamed from ``propertyschema`` to ``keyschema``

.. versionchanged:: 1.3
   Renamed from ``keyschema`` to ``keysrules``

meta
----

This is actually not a validation rule but a field in a rules set that can
conventionally be used for application specific data that is descriptive for
the document field::

    {'id': {'type': 'string', 'regex': r'[A-M]\d{,6}',
            'meta': {'label': 'Inventory Nr.'}}}

The assigned data can be of any type.

.. versionadded:: 1.3

min, max
--------

Minimum and maximum value allowed for any object whose class implements
comparison operations (``__gt__`` & ``__lt__``).

.. doctest::

    >>> schema = {'weight': {'min': 10.1, 'max': 10.9}}
    >>> document = {'weight': 10.3}
    >>> v.validate(document, schema)
    True

    >>> document = {'weight': 12}
    >>> v.validate(document, schema)
    False

    >>> v.errors
    {'weight': ['max value is 10.9']}

.. versionchanged:: 1.0
  Allows any type to be compared.

.. versionchanged:: 0.7
  Added support for ``float`` and ``number`` types.

minlength, maxlength
--------------------

Minimum and maximum length allowed for sized types that implement ``__len__``.

.. doctest::

    >>> schema = {'numbers': {'minlength': 1, 'maxlength': 3}}
    >>> document = {'numbers': [256, 2048, 23]}
    >>> v.validate(document, schema)
    True

    >>> document = {'numbers': [256, 2048, 23, 2]}
    >>> v.validate(document, schema)
    False

    >>> v.errors
    {'numbers': ['max length is 3']}


noneof
------

Validates if *none* of the provided constraints validates the field. See
`\*of-rules`_ for details.

.. versionadded:: 0.9

nullable
--------

If ``True`` the field value is allowed to be :obj:`None`. The rule will be
checked on every field, regardless it's defined or not. The rule's constraint
defaults ``False``.

.. doctest::

   >>> v.schema = {'a_nullable_integer': {'nullable': True, 'type': 'integer'}, 'an_integer': {'type': 'integer'}}

   >>> v.validate({'a_nullable_integer': 3})
   True
   >>> v.validate({'a_nullable_integer': None})
   True

   >>> v.validate({'an_integer': 3})
   True
   >>> v.validate({'an_integer': None})
   False
   >>> v.errors
   {'an_integer': ['null value not allowed']}

.. versionchanged:: 0.7 ``nullable`` is valid on fields lacking type definition.
.. versionadded:: 0.3.0


\*of-rules
----------

These rules allow you to define different sets of rules to validate against.
The field will be considered valid if it validates against the set in the list
according to the prefixes logics ``all``, ``any``, ``one`` or ``none``.

==========  ====================================================================
``allof``   Validates if *all* of the provided constraints validates the field.
``anyof``   Validates if *any* of the provided constraints validates the field.
``noneof``  Validates if *none* of the provided constraints validates the field.
``oneof``   Validates if *exactly one* of the provided constraints applies.
==========  ====================================================================

.. note::

    :doc:`Normalization <normalization-rules>` cannot be used in the rule sets
    within the constraints of these rules.

.. note::

    Before you employ these rules, you should have investigated other possible
    solutions for the problem at hand with and without Cerberus. Sometimes
    people tend to overcomplicate schemas with these rules.

For example, to verify that a field's value is a number between 0 and 10 or 100
and 110, you could do the following:

.. doctest::

    >>> schema = {'prop1':
    ...           {'type': 'number',
    ...            'anyof':
    ...            [{'min': 0, 'max': 10}, {'min': 100, 'max': 110}]}}

    >>> document = {'prop1': 5}
    >>> v.validate(document, schema)
    True

    >>> document = {'prop1': 105}
    >>> v.validate(document, schema)
    True

    >>> document = {'prop1': 55}
    >>> v.validate(document, schema)
    False
    >>> v.errors   # doctest: +SKIP
    {'prop1': ['no definitions validate',
               {'anyof definition 0': ['max value is 10'],
                'anyof definition 1': ['min value is 100']}]}

The ``anyof`` rule tests each rules set in the list. Hence, the above schema is
equivalent to creating two separate schemas:

.. doctest::

    >>> schema1 = {'prop1': {'type': 'number', 'min':   0, 'max':  10}}
    >>> schema2 = {'prop1': {'type': 'number', 'min': 100, 'max': 110}}

    >>> document = {'prop1': 5}
    >>> v.validate(document, schema1) or v.validate(document, schema2)
    True

    >>> document = {'prop1': 105}
    >>> v.validate(document, schema1) or v.validate(document, schema2)
    True

    >>> document = {'prop1': 55}
    >>> v.validate(document, schema1) or v.validate(document, schema2)
    False

.. versionadded:: 0.9

\*of-rules typesaver
....................

You can concatenate any of-rule with an underscore and another rule with a
list of rule-values to save typing:

.. testcode::

    {'foo': {'anyof_regex': ['^ham', 'spam$']}}
    # is equivalent to
    {'foo': {'anyof': [{'regex': '^ham'}, {'regex': 'spam$'}]}}
    # but is also equivalent to
    # {'foo': {'regex': r'(^ham|spam$)'}}

Thus you can use this to validate a document against several schemas without
implementing your own logic:

.. testsetup::

    employees = ()

.. doctest::

    >>> schemas = [{'department': {'required': True, 'regex': '^IT$'}, 'phone': {'nullable': True}},
    ...            {'department': {'required': True}, 'phone': {'required': True}}]
    >>> emloyee_vldtr = Validator({'employee': {'oneof_schema': schemas, 'type': 'dict'}}, allow_unknown=True)
    >>> invalid_employees_phones = []
    >>> for employee in employees:
    ...     if not employee_vldtr.validate(employee):
    ...         invalid_employees_phones.append(employee)

.. versionadded: 1.0

oneof
-----

Validates if *exactly one* of the provided constraints applies. See `\*of-rules`_ for details.

.. versionadded:: 0.9

.. _readonly:

readonly
--------
If ``True`` the value is readonly. Validation will fail if this field is
present in the target dictionary. This is useful, for example, when receiving
a payload which is to be validated before it is sent to the datastore. The
field might be provided by the datastore, but should not writable.

A validator can be configured with the initialization argument
``purge_readonly`` and the property with the same name to let it delete all
fields that have this rule defined positively.

.. versionchanged:: 1.0.2
   Can be used in conjunction with ``default`` and ``default_setter``,
   see :ref:`default-values`.

regex
-----
The validation will fail if the field's value does not *match* the provided
regular expression. It is only tested on string values.

.. doctest::

    >>> schema = {
    ...     'email': {
    ...        'type': 'string',
    ...        'regex': '^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$'
    ...     }
    ... }
    >>> document = {'email': 'john@example.com'}
    >>> v.validate(document, schema)
    True

    >>> document = {'email': 'john_at_example_dot_com'}
    >>> v.validate(document, schema)
    False

    >>> v.errors
    {'email': ["value does not match regex '^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\\.[a-zA-Z0-9-.]+$'"]}

A trailing ``$`` is ensured for all patterns in order to encourage users to
write complete patterns for matching (and not a searching) strings. The
implementation is inconsistent with regards to a leading ``^``, these are not
enforced. That inconsistency will not be fixed for the ``1.3.x`` release
series.
For details on regular expression syntax, see the documentation on the standard
library's :mod:`re`-module.

.. hint::

    Mind that one can set behavioural flags as part of the expression which is
    equivalent to passing ``flags`` to the :func:`re.compile` function for
    example. So, the constraint ``'(?i)holy grail'`` includes the equivalent
    of the :obj:`re.I` flag and matches any string that includes 'holy grail'
    or any variant of it with upper-case glyphs. Look for ``(?aiLmsux)`` in the
    mentioned library documentation for a description there.

.. versionadded:: 0.7

.. _require_all:

require_all
-----------
This can be used in conjunction with the `schema (dict)`_ rule when validating
a mapping in order to set the :attr:`~cerberus.Validator.require_all` property
of the validator for the subdocument.
For a full elaboration refer to :ref:`this paragraph <requiring-all>`.

.. _required:

required
--------

If ``True`` the field is mandatory. Validation will fail when it is missing,
unless :meth:`~cerberus.Validator.validate` is called with ``update=True``:

.. doctest::

    >>> v.schema = {'name': {'required': True, 'type': 'string'}, 'age': {'type': 'integer'}}
    >>> document = {'age': 10}
    >>> v.validate(document)
    False
    >>> v.errors
    {'name': ['required field']}

    >>> v.validate(document, update=True)
    True

.. note::

   To define all fields of a document as required see
   :ref:`this section about the available options <requiring-all>`.

.. note::

   String fields with empty values will still be validated, even when
   ``required`` is set to ``True``. If you don't want to accept empty values,
   see the empty_ rule.

.. note::
   The evaluation of this rule does not consider any constraints defined with
   the :ref:`dependencies` rule.

.. versionchanged:: 0.8
   Check field dependencies.

.. _schema_dict-rule:

schema (dict)
-------------
If a field for which a ``schema``-rule is defined has a *mapping* as value,
that mapping will be validated against the schema that is provided as
constraint.

.. doctest::

    >>> schema = {'a_dict': {'type': 'dict', 'schema': {'address': {'type': 'string'},
    ...                                                 'city': {'type': 'string', 'required': True}}}}
    >>> document = {'a_dict': {'address': 'my address', 'city': 'my town'}}
    >>> v.validate(document, schema)
    True

.. note::

    To validate *arbitrary keys* of a mapping, see keysrules-rule_, resp.
    valuesrules-rule_ for validating *arbitrary values* of a mapping.

schema (list)
-------------
If ``schema``-validation encounters an arbritrary sized *sequence* as value,
all items of the sequence will be validated against the rules provided in
``schema``'s constraint.

.. doctest::

   >>> schema = {'a_list': {'type': 'list', 'schema': {'type': 'integer'}}}
   >>> document = {'a_list': [3, 4, 5]}
   >>> v.validate(document, schema)
   True

The `schema` rule on ``list`` types is also the preferred method for defining
and validating a list of dictionaries.

.. note::

    Using this rule should be accompanied with a ``type``-rule explicitly
    restricting the field to the ``list``-type like in the example. Otherwise
    false results can be expected when a mapping is validated against this rule
    with constraints for a sequence.

.. doctest::

   >>> schema = {'rows': {'type': 'list',
   ...                    'schema': {'type': 'dict', 'schema': {'sku': {'type': 'string'},
   ...                                                          'price': {'type': 'integer'}}}}}
   >>> document = {'rows': [{'sku': 'KT123', 'price': 100}]}
   >>> v.validate(document, schema)
   True

.. versionchanged:: 0.0.3
  Schema rule for ``list`` types of arbitrary length

.. _type:

type
----
Data type allowed for the key value. Can be one of the following names:

.. list-table::
   :header-rows: 1

   * - Type Name
     - Python 2 Type
     - Python 3 Type
   * - ``boolean``
     - :class:`py2:bool`
     - :class:`py3:bool`
   * - ``binary``
     - :class:`py2:bytes` [#]_, :class:`py2:bytearray`
     - :class:`py3:bytes`, :class:`py3:bytearray`
   * - ``date``
     - :class:`py2:datetime.date`
     - :class:`py3:datetime.date`
   * - ``datetime``
     - :class:`py2:datetime.datetime`
     - :class:`py3:datetime.datetime`
   * - ``dict``
     - :class:`py2:collections.Mapping`
     - :class:`py3:collections.abc.Mapping`
   * - ``float``
     - :class:`py2:float`
     - :class:`py3:float`
   * - ``integer``
     - :class:`py2:int`, :class:`py2:long`
     - :class:`py3:int`
   * - ``list``
     - :class:`py2:collections.Sequence`, excl. ``string``
     - :class:`py3:collections.abc.Sequence`, excl. ``string``
   * - ``number``
     - :class:`py2:float`, :class:`py2:int`, :class:`py2:long`, excl. :class:`py2:bool`
     - :class:`py3:float`, :class:`py3:int`, excl. :class:`py3:bool`
   * - ``set``
     - :class:`py2:set`
     - :class:`py3:set`
   * - ``string``
     - :func:`py2:basestring`
     - :class:`py3:str`

You can extend this list and support :ref:`custom types <new-types>`.

A list of types can be used to allow different values:

.. doctest::

    >>> v.schema = {'quotes': {'type': ['string', 'list']}}
    >>> v.validate({'quotes': 'Hello world!'})
    True
    >>> v.validate({'quotes': ['Do not disturb my circles!', 'Heureka!']})
    True

.. doctest::

    >>> v.schema = {'quotes': {'type': ['string', 'list'], 'schema': {'type': 'string'}}}
    >>> v.validate({'quotes': 'Hello world!'})
    True
    >>> v.validate({'quotes': [1, 'Heureka!']})
    False
    >>> v.errors
    {'quotes': [{0: ['must be of string type']}]}

.. note::

    While the ``type`` rule is not required to be set at all, it is not
    encouraged to leave it unset especially when using more complex rules such
    as ``schema``. If you decide you still don't want to set an explicit type,
    rules such as ``schema`` are only applied to values where the rules can
    actually be used (such as ``dict`` and ``list``). Also, in the case of
    ``schema``, cerberus will try to decide if a ``list`` or a ``dict`` type
    rule is more appropriate and infer it depending on what the ``schema`` rule
    looks like.

.. note::

    Please note that type validation is performed before most others which
    exist for the same field (only `nullable`_ and `readonly`_ are considered
    beforehand). In the occurrence of a type failure subsequent validation
    rules on the field will be skipped and validation will continue on other
    fields. This allows one to safely assume that field type is correct when other
    (standard or custom) rules are invoked.

.. versionchanged:: 1.0
   Added the ``binary`` data type.

.. versionchanged:: 0.9
   If a list of types is given, the key value must match *any* of them.

.. versionchanged:: 0.7.1
   ``dict`` and ``list`` typechecking are now performed with the more generic
   ``Mapping`` and ``Sequence`` types from the builtin ``collections`` module.
   This means that instances of custom types designed to the same interface as
   the builtin ``dict`` and ``list`` types can be validated with Cerberus. We
   exclude strings when type checking for ``list``/``Sequence`` because it
   in the validation situation it is almost certain the string was not the
   intended data type for a sequence.

.. versionchanged:: 0.7
   Added the ``set`` data type.

.. versionchanged:: 0.6
   Added the ``number`` data type.

.. versionchanged:: 0.4.0
   Type validation is always executed first, and blocks other field validation
   rules on failure.

.. versionchanged:: 0.3.0
   Added the ``float`` data type.

.. [#] This is actually an alias of :class:`py2:str` in Python 2.

.. _valuesrules-rule:

valuesrules
-----------
This rules takes a set of rules as constraint that all values of a
:term:`mapping` are validated with.

.. doctest::

    >>> schema = {'numbers':
    ...              {'type': 'dict',
    ...               'valuesrules': {'type': 'integer', 'min': 10}}
    ... }
    >>> document = {'numbers': {'an integer': 10, 'another integer': 100}}
    >>> v.validate(document, schema)
    True

    >>> document = {'numbers': {'an integer': 9}}
    >>> v.validate(document, schema)
    False

    >>> v.errors
    {'numbers': [{'an integer': ['min value is 10']}]}

.. versionadded:: 0.7
.. versionchanged:: 0.9
   renamed ``keyschema`` to ``valueschema``
.. versionchanged:: 1.3
   renamed ``valueschema`` to ``valuesrules``