1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
#if PY_VERSION_HEX >= 0x03080000
# define HAVE_PYINTERPSTATE_GETDICT
#endif
static PyObject *_current_interp_key(void)
{
PyInterpreterState *interp = PyThreadState_GET()->interp;
#ifdef HAVE_PYINTERPSTATE_GETDICT
return PyInterpreterState_GetDict(interp); /* shared reference */
#else
return interp->modules;
#endif
}
static PyObject *_get_interpstate_dict(void)
{
/* Hack around to return a dict that is subinterpreter-local.
Does not return a new reference. Returns NULL in case of
error, but without setting any exception. (If called late
during shutdown, we *can't* set an exception!)
*/
static PyObject *attr_name = NULL;
PyThreadState *tstate;
PyObject *d, *interpdict;
int err;
PyInterpreterState *interp;
tstate = PyThreadState_GET();
if (tstate == NULL) {
/* no thread state! */
return NULL;
}
interp = tstate->interp;
#ifdef HAVE_PYINTERPSTATE_GETDICT
interpdict = PyInterpreterState_GetDict(interp); /* shared reference */
#else
interpdict = interp->builtins;
#endif
if (interpdict == NULL) {
/* subinterpreter was cleared already, or is being cleared right now,
to a point that is too much for us to continue */
return NULL;
}
/* from there on, we know the (sub-)interpreter is still valid */
if (attr_name == NULL) {
attr_name = PyText_InternFromString("__cffi_backend_extern_py");
if (attr_name == NULL)
goto error;
}
d = PyDict_GetItem(interpdict, attr_name);
if (d == NULL) {
d = PyDict_New();
if (d == NULL)
goto error;
err = PyDict_SetItem(interpdict, attr_name, d);
Py_DECREF(d); /* if successful, there is one ref left in interpdict */
if (err < 0)
goto error;
}
return d;
error:
PyErr_Clear(); /* typically a MemoryError */
return NULL;
}
static PyObject *_ffi_def_extern_decorator(PyObject *outer_args, PyObject *fn)
{
const char *s;
PyObject *error, *onerror, *infotuple, *old1;
int index, err;
const struct _cffi_global_s *g;
struct _cffi_externpy_s *externpy;
CTypeDescrObject *ct;
FFIObject *ffi;
builder_c_t *types_builder;
PyObject *name = NULL;
PyObject *interpstate_dict;
PyObject *interpstate_key;
if (!PyArg_ParseTuple(outer_args, "OzOO", &ffi, &s, &error, &onerror))
return NULL;
if (s == NULL) {
name = PyObject_GetAttrString(fn, "__name__");
if (name == NULL)
return NULL;
s = PyText_AsUTF8(name);
if (s == NULL) {
Py_DECREF(name);
return NULL;
}
}
types_builder = &ffi->types_builder;
index = search_in_globals(&types_builder->ctx, s, strlen(s));
if (index < 0)
goto not_found;
g = &types_builder->ctx.globals[index];
if (_CFFI_GETOP(g->type_op) != _CFFI_OP_EXTERN_PYTHON)
goto not_found;
Py_XDECREF(name);
ct = realize_c_type(types_builder, types_builder->ctx.types,
_CFFI_GETARG(g->type_op));
if (ct == NULL)
return NULL;
infotuple = prepare_callback_info_tuple(ct, fn, error, onerror, 0);
Py_DECREF(ct);
if (infotuple == NULL)
return NULL;
/* don't directly attach infotuple to externpy: in the presence of
subinterpreters, each time we switch to a different
subinterpreter and call the C function, it will notice the
change and look up infotuple from the interpstate_dict.
*/
interpstate_dict = _get_interpstate_dict();
if (interpstate_dict == NULL) {
Py_DECREF(infotuple);
return PyErr_NoMemory();
}
externpy = (struct _cffi_externpy_s *)g->address;
interpstate_key = PyLong_FromVoidPtr((void *)externpy);
if (interpstate_key == NULL) {
Py_DECREF(infotuple);
return NULL;
}
err = PyDict_SetItem(interpstate_dict, interpstate_key, infotuple);
Py_DECREF(interpstate_key);
Py_DECREF(infotuple); /* interpstate_dict owns the last ref */
if (err < 0)
return NULL;
/* force _update_cache_to_call_python() to be called the next time
the C function invokes cffi_call_python, to update the cache */
old1 = externpy->reserved1;
externpy->reserved1 = Py_None; /* a non-NULL value */
Py_INCREF(Py_None);
Py_XDECREF(old1);
/* return the function object unmodified */
Py_INCREF(fn);
return fn;
not_found:
PyErr_Format(FFIError, "ffi.def_extern('%s'): no 'extern \"Python\"' "
"function with this name", s);
Py_XDECREF(name);
return NULL;
}
static int _update_cache_to_call_python(struct _cffi_externpy_s *externpy)
{
PyObject *interpstate_dict, *interpstate_key, *infotuple, *old1, *new1;
PyObject *old2;
interpstate_dict = _get_interpstate_dict();
if (interpstate_dict == NULL)
return 4; /* oops, shutdown issue? */
interpstate_key = PyLong_FromVoidPtr((void *)externpy);
if (interpstate_key == NULL)
goto error;
infotuple = PyDict_GetItem(interpstate_dict, interpstate_key);
Py_DECREF(interpstate_key);
if (infotuple == NULL)
return 3; /* no ffi.def_extern() from this subinterpreter */
new1 = _current_interp_key();
Py_INCREF(new1);
Py_INCREF(infotuple);
old1 = (PyObject *)externpy->reserved1;
old2 = (PyObject *)externpy->reserved2;
externpy->reserved1 = new1; /* holds a reference */
externpy->reserved2 = infotuple; /* holds a reference (issue #246) */
Py_XDECREF(old1);
Py_XDECREF(old2);
return 0; /* no error */
error:
PyErr_Clear();
return 2; /* out of memory? */
}
#if (defined(WITH_THREAD) && !defined(_MSC_VER) && \
!defined(__amd64__) && !defined(__x86_64__) && \
!defined(__i386__) && !defined(__i386))
# if defined(HAVE_SYNC_SYNCHRONIZE)
# define read_barrier() __sync_synchronize()
# elif defined(_AIX)
# define read_barrier() __lwsync()
# elif defined(__SUNPRO_C) || defined(__SUNPRO_CC)
# include <mbarrier.h>
# define read_barrier() __compiler_barrier()
# elif defined(__hpux)
# define read_barrier() _Asm_mf()
# else
# define read_barrier() /* missing */
# warning "no definition for read_barrier(), missing synchronization for\
multi-thread initialization in embedded mode"
# endif
#else
# define read_barrier() (void)0
#endif
static void cffi_call_python(struct _cffi_externpy_s *externpy, char *args)
{
/* Invoked by the helpers generated from extern "Python" in the cdef.
'externpy' is a static structure that describes which of the
extern "Python" functions is called. It has got fields 'name' and
'type_index' describing the function, and more reserved fields
that are initially zero. These reserved fields are set up by
ffi.def_extern(), which invokes _ffi_def_extern_decorator() above.
'args' is a pointer to an array of 8-byte entries. Each entry
contains an argument. If an argument is less than 8 bytes, only
the part at the beginning of the entry is initialized. If an
argument is 'long double' or a struct/union, then it is passed
by reference.
'args' is also used as the place to write the result to
(directly, even if more than 8 bytes). In all cases, 'args' is
at least 8 bytes in size.
*/
int err = 0;
/* This read barrier is needed for _embedding.h. It is paired
with the write_barrier() there. Without this barrier, we can
in theory see the following situation: the Python
initialization code already ran (in another thread), and the
'_cffi_call_python' function pointer directed execution here;
but any number of other data could still be seen as
uninitialized below. For example, 'externpy' would still
contain NULLs even though it was correctly set up, or
'interpreter_lock' (the GIL inside CPython) would still be seen
as NULL, or 'autoInterpreterState' (used by
PyGILState_Ensure()) would be NULL or contain bogus fields.
*/
read_barrier();
save_errno();
/* We need the infotuple here. We could always go through
_update_cache_to_call_python(), but to avoid the extra dict
lookups, we cache in (reserved1, reserved2) the last seen pair
(interp->modules, infotuple). The first item in this tuple is
a random PyObject that identifies the subinterpreter.
*/
if (externpy->reserved1 == NULL) {
/* Not initialized! We didn't call @ffi.def_extern() on this
externpy object from any subinterpreter at all. */
err = 1;
}
else {
PyGILState_STATE state = gil_ensure();
if (externpy->reserved1 != _current_interp_key()) {
/* Update the (reserved1, reserved2) cache. This will fail
if we didn't call @ffi.def_extern() in this particular
subinterpreter. */
err = _update_cache_to_call_python(externpy);
}
if (!err) {
general_invoke_callback(0, args, args, externpy->reserved2);
}
gil_release(state);
}
if (err) {
static const char *msg[] = {
"no code was attached to it yet with @ffi.def_extern()",
"got internal exception (out of memory?)",
"@ffi.def_extern() was not called in the current subinterpreter",
"got internal exception (shutdown issue?)",
};
fprintf(stderr, "extern \"Python\": function %s() called, "
"but %s. Returning 0.\n", externpy->name, msg[err-1]);
memset(args, 0, externpy->size_of_result);
}
restore_errno();
}
|