1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
|
#!/usr/bin/env python3
""" This module contains core functions and classes related to alignment. """
################################################################################
# CGE ALIGNMENT MODULE #
################################################################################
import os, subprocess, collections
from Bio.Blast import NCBIXML
from Bio import SeqIO
# Python2 / Python3 specifik imports
try: from string import maketrans
except: maketrans = str.maketrans
def extended_cigar(aligned_template, aligned_query):
''' Convert mutation annotations to extended cigar format
https://github.com/lh3/minimap2#the-cs-optional-tag
USAGE:
>>> template = 'CGATCGATAAATAGAGTAG---GAATAGCA'
>>> query = 'CGATCG---AATAGAGTAGGTCGAATtGCA'
>>> extended_cigar(template, query) == ':6-ata:10+gtc:4*at:3'
True
'''
# - Go through each position in the alignment
insertion = []
deletion = []
matches = []
cigar = []
for r_aa, q_aa in zip(aligned_template.lower(), aligned_query.lower()):
gap_ref = r_aa == '-'
gap_que = q_aa == '-'
match = r_aa == q_aa
if matches and not match:
# End match block
cigar.append(":%s"%len(matches))
matches = []
if insertion and not gap_ref:
# End insertion
cigar.append("+%s"%''.join(insertion))
insertion = []
elif deletion and not gap_que:
# End deletion
cigar.append("-%s"%''.join(deletion))
deletion = []
if gap_ref:
if insertion:
# Extend insertion
insertion.append(q_aa)
else:
# Start insertion
insertion = [q_aa]
elif gap_que:
if deletion:
# Extend deletion
deletion.append(r_aa)
else:
# Start deletion
deletion = [r_aa]
elif match:
if matches:
# Extend match block
matches.append(r_aa)
else:
# Start match block
matches = [r_aa]
else:
# Add SNP annotation
cigar.append("*%s%s"%(r_aa, q_aa))
if matches:
cigar.append(":%s"%len(matches))
del matches
if insertion:
# End insertion
cigar.append("+%s"%''.join(insertion))
del insertion
elif deletion:
# End deletion
cigar.append("-%s"%''.join(deletion))
del deletion
return ''.join(cigar)
def cigar2query(template, cigar):
''' Generate query sequence from the template and extended cigar annotation
USAGE:
>>> template = 'CGATCGATAAATAGAGTAGGAATAGCA'
>>> cigar = ':6-ata:10+gtc:4*at:3'
>>> cigar2query(template, cigar) == 'CGATCGAATAGAGTAGGTCGAATtGCA'.upper()
True
'''
query = []
entries = ['+','-','*',':']
number = list(map(str,range(10)))
cigar_length = len(cigar)
num = []
entry = None
pos = 0
i = 0
while i < cigar_length:
if cigar[i] in entries:
# New entry
if entry == ':':
old_pos = pos
pos += int(''.join(num))
query.append(template[old_pos:pos])
num = []
entry = cigar[i]
if entry == '*':
i += 2
query.append(cigar[i])
pos += 1
elif cigar[i] in number:
num.append(cigar[i])
elif entry == '-':
pos += 1
elif entry == '+':
query.append(cigar[i])
i += 1
if entry == ':':
old_pos = pos
pos += int(''.join(num))
query.append(template[old_pos:pos])
return ''.join(query).upper()
def Blaster(inputfile, databases, db_path, out_path='.', min_cov=0.6,
threshold=0.9, blast='blastn', cut_off=True):
''' BLAST wrapper method, that takes a simple input and produces a overview
list of the hits to templates, and their alignments
Usage
>>> import os, subprocess, collections
>>> from Bio.Blast import NCBIXML
>>> from Bio import SeqIO
>>> from string import maketrans
>>> inputfile = 'test.fsa'
>>> databases = ['enterobacteriaceae']
>>> db_path = '/path/to/databases/plasmidfinder/'
>>> Blaster(inputfile, databases, db_path)
'''
min_cov = 100 * float(min_cov)
threshold = 100 * float(threshold)
# For alignment
gene_align_query = dict() #will contain the sequence alignment lines
gene_align_homo = dict() #will contain the sequence alignment homolog string
gene_align_sbjct = dict() #will contain the sequence alignment allele string
results = dict() #will contain the results
for db in databases:
# Adding the path to the database and output
db_file = "%s/%s.fsa"%(db_path, db)
os.system("mkdir -p %s/tmp"%(out_path))
os.system("chmod 775 %s/tmp"%(out_path))
out_file = "%s/tmp/out_%s.xml"%(out_path, db)
# Running blast
cmd = "%s -subject %s -query %s -out %s -outfmt '5' -perc_identity %s -dust 'no'"%(blast, db_file, inputfile, out_file, threshold)
process = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
out, err = process.communicate()
# Getting the results
result_handle = open(out_file)
blast_records = NCBIXML.parse(result_handle)
# Declaring variables for saving the results
gene_results = dict() #will contain the results for each gene
# For finding the best hits
best_hsp = dict()
# Keeping track of gene split
gene_split = collections.defaultdict(dict)
# Making the dicts for sequence outputs
gene_align_query[db] = dict()
gene_align_homo[db] = dict()
gene_align_sbjct[db] = dict()
# Parsing over the hits and only keeping the best
for blast_record in blast_records:
query = blast_record.query
blast_record.alignments.sort(key = lambda align: -max((len(hsp.query) * (int(hsp.identities)/float(len(hsp.query))) for hsp in align.hsps)))
for alignment in blast_record.alignments:
# Setting the e-value as 1 and bit as 0 to get the best HSP fragment
best_e_value = 1
best_bit = 0
for hsp in alignment.hsps:
if hsp.expect < best_e_value or hsp.bits > best_bit:
best_e_value = hsp.expect
best_bit = hsp.bits
tmp = alignment.title.split(" ")
sbjct_header = tmp[1]
bit = hsp.bits
sbjct_length = alignment.length
sbjct_start = hsp.sbjct_start
sbjct_end = hsp.sbjct_end
gaps = hsp.gaps
query_string = str(hsp.query)
homo_string = str(hsp.match)
sbjct_string = str(hsp.sbjct)
contig_name = query.replace(">","")
query_start = hsp.query_start
query_end = hsp.query_end
HSP_length = len(query_string)
perc_ident = int(hsp.identities)/float(HSP_length) * 100
strand = 0
coverage = ((int(HSP_length) - int(gaps))/float(sbjct_length))
perc_coverage = ((int(HSP_length) - int(gaps))/float(sbjct_length)) * 100
if int(HSP_length) == int(sbjct_length):
cal_score = perc_ident * coverage * 100
else:
cal_score = perc_ident * coverage
hit_id = "%s:%s..%s:%s:%f"%(contig_name, query_start, query_end, sbjct_header, cal_score)
# If the hit is on the other strand
if sbjct_start > sbjct_end:
tmp = sbjct_start
sbjct_start = sbjct_end
sbjct_end = tmp
query_string = reverse_complement(query_string)
homo_string = homo_string[::-1]
sbjct_string = reverse_complement(sbjct_string)
strand = 1
if cut_off == True:
if perc_coverage > 20 :
best_hsp = {'evalue': hsp.expect, 'sbjct_header': sbjct_header, 'bit': bit,
'perc_ident': perc_ident, 'sbjct_length':sbjct_length,
'sbjct_start': sbjct_start, 'sbjct_end': sbjct_end,
'gaps': gaps, 'query_string': query_string,
'homo_string': homo_string, 'sbjct_string': sbjct_string,
'contig_name': contig_name, 'query_start': query_start,
'query_end': query_end, 'HSP_length': HSP_length, 'coverage': coverage,
'cal_score': cal_score, 'hit_id': hit_id, 'strand': strand,
'perc_coverage': perc_coverage
}
else:
best_hsp = {'evalue': hsp.expect, 'sbjct_header': sbjct_header, 'bit': bit,
'perc_ident': perc_ident, 'sbjct_length':sbjct_length,
'sbjct_start': sbjct_start, 'sbjct_end': sbjct_end,
'gaps': gaps, 'query_string': query_string,
'homo_string': homo_string, 'sbjct_string': sbjct_string,
'contig_name': contig_name, 'query_start': query_start,
'query_end': query_end, 'HSP_length': HSP_length, 'coverage': coverage,
'cal_score': cal_score, 'hit_id': hit_id, 'strand': strand,
'perc_coverage': perc_coverage
}
# Saving the result if any
if best_hsp:
save = 1
# If there are other gene alignments they are compared
if gene_results:
tmp_gene_split = gene_split
tmp_results = gene_results
# Compare the hit results
save, gene_split, gene_results = compare_results(save, best_hsp, tmp_results, tmp_gene_split)
# If the hit is not overlapping with other hit seqeunces it is kept
if save == 1:
gene_results[hit_id] = best_hsp
else:
pass
# If the hit does not cover the entire database reference the missing seqence data are extracted
for hit_id in list(gene_results):
hit = gene_results[hit_id]
# Calculate possible split gene coverage
perc_coverage = hit['perc_coverage']
if hit['sbjct_header'] in gene_split and len(gene_split[hit['sbjct_header']]) > 1:
# Calculate new length
new_length = calculate_new_length(gene_split, gene_results, hit)
hit['split_length'] = new_length
# Calculate new coverage
perc_coverage = new_length / float(hit['sbjct_length']) * 100
# If the hit is above the minimum length threshold it is kept
if perc_coverage >= min_cov:
if hit['coverage'] == 1:
gene_align_query[db][hit_id] = hit['query_string']
gene_align_homo[db][hit_id] = hit['homo_string']
gene_align_sbjct[db][hit_id] = hit['sbjct_string']
elif hit['coverage'] != 1:
# Getting the whole database sequence
for seq_record in SeqIO.parse(db_file, "fasta"):
if seq_record.description == hit['sbjct_header']:
gene_align_sbjct[db][hit_id] = str(seq_record.seq)
break
# Getting the whole contig to extract extra query seqeunce
contig = ''
for seq_record in SeqIO.parse(inputfile, "fasta"):
if seq_record.description == hit['contig_name']:
contig = str(seq_record.seq)
break
# Extract extra sequence from query
query_seq, homo_seq = get_query_align(hit, contig)
# Saving the new alignment sequences
gene_align_query[db][hit_id] = query_seq
gene_align_homo[db][hit_id] = homo_seq
else:
del gene_results[hit_id]
if hit['sbjct_header'] in gene_split:
del gene_split[hit['sbjct_header']]
# Save the database result
if gene_results:
results[db] = gene_results
else:
results[db] = "No hit found"
return (results, gene_align_query, gene_align_homo, gene_align_sbjct)
trans = maketrans("AGCT","TCGA")
def reverse_complement(seq):
''' Make reverse complement strand '''
return seq.translate(trans)[::-1]
def compare_results(save, best_hsp, tmp_results, tmp_gene_split):
''' Function for comparing hits and saving only the best hit '''
# Get data for comparison
hit_id = best_hsp['hit_id']
new_start_query = best_hsp['query_start']
new_end_query = best_hsp['query_end']
new_start_sbjct = int(best_hsp['sbjct_start'])
new_end_sbjct = int(best_hsp['sbjct_end'])
new_score = best_hsp['cal_score']
new_db_hit = best_hsp['sbjct_header']
new_contig = best_hsp['contig_name']
new_HSP = best_hsp['HSP_length']
# See if the best HSP fragment overlap with another allignment and keep the
# allignment with the highest score - if the new fragment is not providing new seqeunce
for hit in list(tmp_results):
hit_data = tmp_results[hit]
old_start_query = hit_data['query_start']
old_end_query = hit_data['query_end']
old_start_sbjct = int(hit_data['sbjct_start'])
old_end_sbjct = int(hit_data['sbjct_end'])
old_score = hit_data['cal_score']
old_db_hit = hit_data['sbjct_header']
old_contig = hit_data['contig_name']
old_HSP = hit_data['HSP_length']
remove_old = 0
# If they align to the same gene in the database they are compared
if new_db_hit == old_db_hit:
# If the hit provids additional sequence it is kept and the new coverage is saved
# otherwise the one with the highest score is kept
if new_start_sbjct < (old_start_sbjct) or new_end_sbjct > (old_end_sbjct):
# Save the hits as splitted
tmp_gene_split[old_db_hit][hit_id] = 1
if not hit in tmp_gene_split[old_db_hit]:
tmp_gene_split[old_db_hit][hit] = 1
else:
if new_score > old_score:
# Set to remove old hit
remove_old = 1
# Save a split if the new hit still creats one
if new_db_hit in tmp_gene_split and not hit_id in tmp_gene_split[new_db_hit]:
tmp_gene_split[new_db_hit][hit_id] = 1
else:
save = 0
# If the old and new hit is not identical the possible saved gene split for the new hit is removed
if hit_id != hit:
if new_db_hit in tmp_gene_split and hit_id in tmp_gene_split[new_db_hit]:
del tmp_gene_split[new_db_hit][hit_id]
break
# If the hits comes form the same part of the contig sequnce but match different genes only the best hit is kept
if new_contig == old_contig:
# if the two hits cover the exact same place on the contig only
# the percentage of identity is compared
if old_start_query == new_start_query and old_end_query == new_end_query:
if best_hsp['perc_ident'] > hit_data['perc_ident']:
# Set to remove old hit
remove_old = 1
# Save a split if the new hit still creats one
if new_db_hit in tmp_gene_split and not hit_id in tmp_gene_split[new_db_hit]:
tmp_gene_split[new_db_hit][hit_id] = 1
elif best_hsp['perc_ident'] == hit_data['perc_ident']:
# Save both
# Save a split if the new hit still creats one
if new_db_hit in tmp_gene_split and not hit_id in tmp_gene_split[new_db_hit]:
tmp_gene_split[new_db_hit][hit_id] = 1
else:
save = 0
# Remove new gene from gene split if present
if new_db_hit in tmp_gene_split and hit_id in tmp_gene_split[new_db_hit]:
del tmp_gene_split[new_db_hit][hit_id]
break
elif (max(old_end_query, new_end_query) - min(old_start_query, new_start_query)) <= ((old_end_query - old_start_query) + (new_end_query - new_start_query)):
if new_score > old_score:
# Set to remove old gene
remove_old = 1
# Save a split if the new hit still creats one
if new_db_hit in tmp_gene_split and not hit_id in tmp_gene_split[new_db_hit]:
tmp_gene_split[new_db_hit][hit_id] = 1
elif new_score == old_score:
# If both genes are completly covered the longest hit is chosen
if int(best_hsp['perc_coverage']) == 100 and int(hit_data['perc_coverage']) == 100 and new_HSP > old_HSP:
# Set to remove old gene
remove_old = 1
# Save a split if the new hit creats one - both hits are saved
if new_db_hit in tmp_gene_split and not hit_id in tmp_gene_split[new_db_hit]:
tmp_gene_split[new_db_hit][hit_id] = 1
else:
# Remove new gene from gene split if present
if new_db_hit in tmp_gene_split and hit_id in tmp_gene_split[new_db_hit]:
del tmp_gene_split[new_db_hit][hit_id]
save = 0
break
# Remove old hit if new hit is better
if remove_old == 1:
del tmp_results[hit]
# Remove gene from gene split if present
if old_db_hit in tmp_gene_split and hit in tmp_gene_split[old_db_hit]:
del tmp_gene_split[old_db_hit][hit]
return save, tmp_gene_split, tmp_results
def calculate_new_length(gene_split, gene_results, hit):
''' Function for calcualting new length if the gene is split on several
contigs
'''
# Looping over splitted hits and calculate new length
first = 1
for split in gene_split[hit['sbjct_header']]:
new_start = int(gene_results[split]['sbjct_start'])
new_end = int(gene_results[split]['sbjct_end'])
# Get the frist HSP
if first == 1:
new_length = int(gene_results[split]['HSP_length'])
old_start = new_start
old_end = new_end
first = 0
continue
if new_start < old_start:
new_length = new_length + (old_start - new_start)
old_start = new_start
if new_end > old_end:
new_length = new_length + (new_end - old_end)
old_end = new_end
return(new_length)
def get_query_align(hit, contig):
''' Function for extracting extra seqeunce data to the query alignment if
the full reference length are not covered
'''
# Getting data needed to extract sequences
query_seq = hit['query_string']
homo_seq = hit['homo_string']
sbjct_start = int(hit['sbjct_start'])
sbjct_end = int(hit['sbjct_end'])
query_start = int(hit['query_start'])
query_end = int(hit['query_end'])
length = int(hit['sbjct_length'])
# If the alignment doesn't start at the first position data is added to the begnning
if sbjct_start!= 1:
missing = sbjct_start - 1
if query_start >= missing and hit['strand'] != 1 or hit['strand'] == 1 and missing <= (len(contig) - query_end):
# Getting the query sequence
# If the the hit is on the other strand the characters are reversed
if hit['strand'] == 1:
start_pos = query_end
end_pos = query_end + missing
chars = contig[start_pos:end_pos]
chars = reverse_complement(chars)
else:
start_pos = query_start - missing - 1
end_pos = query_start - 1
chars = contig[start_pos:end_pos]
query_seq = chars + str(query_seq)
else:
# Getting the query sequence
# If the the hit is on the other strand the characters are reversed
if hit['strand'] == 1:
if query_end == len(contig):
query_seq = "-" * missing + str(query_seq)
else:
start_pos = query_end
chars = contig[start_pos:]
chars = reverse_complement(chars)
query_seq = "-" * (missing - len(chars)) + chars + str(query_seq)
elif query_start < 3:
query_seq = "-" * missing + str(query_seq)
else:
end_pos = query_start - 2
chars = contig[0:end_pos]
query_seq = "-" * (missing - len(chars)) + chars + str(query_seq)
# Adding to the homo sequence
spaces = " " * missing
homo_seq = str(spaces) + str(homo_seq)
# If the alignment dosen't end and the last position data is added to the end
if sbjct_end < length:
missing = length - sbjct_end
if missing <= (len(contig) - query_end) and hit['strand'] != 1 or hit['strand'] == 1 and query_start >= missing:
# Getting the query sequence
# If the the hit is on the other strand the characters are reversed
if hit['strand'] == 1:
start_pos = query_start - missing - 1
end_pos = query_start - 1
chars = contig[start_pos:end_pos]
chars = reverse_complement(chars)
else:
start_pos = query_end
end_pos = query_end + missing
chars = contig[start_pos:end_pos]
query_seq = query_seq + chars
else:
# If the hit is on the other strand the characters are reversed
if hit['strand'] == 1:
if query_start < 3:
query_seq = query_seq + "-" * missing
else:
end_pos = query_start - 2
chars = contig[0:end_pos]
chars = reverse_complement(chars)
query_seq = query_seq + chars + "-" * (missing - len(chars))
elif query_end == len(contig):
query_seq = query_seq + "-" * missing
else:
start_pos = query_end
chars = contig[start_pos:]
query_seq = query_seq + chars + "-" * (missing - len(chars))
# Adding to the homo sequence
spaces = " " * int(missing)
homo_seq = str(homo_seq) + str(spaces)
return query_seq, homo_seq
|