1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
<h1 align="center">Charset Detection, for Everyone π</h1>
<p align="center">
<sup>The Real First Universal Charset Detector</sup><br>
<a href="https://pypi.org/project/charset-normalizer">
<img src="https://img.shields.io/pypi/pyversions/charset_normalizer.svg?orange=blue" />
</a>
<a href="https://pepy.tech/project/charset-normalizer/">
<img alt="Download Count Total" src="https://static.pepy.tech/badge/charset-normalizer/month" />
</a>
<a href="https://bestpractices.coreinfrastructure.org/projects/7297">
<img src="https://bestpractices.coreinfrastructure.org/projects/7297/badge">
</a>
</p>
<p align="center">
<sup><i>Featured Packages</i></sup><br>
<a href="https://github.com/jawah/niquests">
<img alt="Static Badge" src="https://img.shields.io/badge/Niquests-Most_Advanced_HTTP_Client-cyan">
</a>
<a href="https://github.com/jawah/wassima">
<img alt="Static Badge" src="https://img.shields.io/badge/Wassima-Certifi_Replacement-cyan">
</a>
</p>
<p align="center">
<sup><i>In other language (unofficial port - by the community)</i></sup><br>
<a href="https://github.com/nickspring/charset-normalizer-rs">
<img alt="Static Badge" src="https://img.shields.io/badge/Rust-red">
</a>
</p>
> A library that helps you read text from an unknown charset encoding.<br /> Motivated by `chardet`,
> I'm trying to resolve the issue by taking a new approach.
> All IANA character set names for which the Python core library provides codecs are supported.
<p align="center">
>>>>> <a href="https://charsetnormalizerweb.ousret.now.sh" target="_blank">π Try Me Online Now, Then Adopt Me π </a> <<<<<
</p>
This project offers you an alternative to **Universal Charset Encoding Detector**, also known as **Chardet**.
| Feature | [Chardet](https://github.com/chardet/chardet) | Charset Normalizer | [cChardet](https://github.com/PyYoshi/cChardet) |
|--------------------------------------------------|:---------------------------------------------:|:--------------------------------------------------------------------------------------------------:|:-----------------------------------------------:|
| `Fast` | β | β
| β
|
| `Universal**` | β | β
| β |
| `Reliable` **without** distinguishable standards | β | β
| β
|
| `Reliable` **with** distinguishable standards | β
| β
| β
|
| `License` | LGPL-2.1<br>_restrictive_ | MIT | MPL-1.1<br>_restrictive_ |
| `Native Python` | β
| β
| β |
| `Detect spoken language` | β | β
| N/A |
| `UnicodeDecodeError Safety` | β | β
| β |
| `Whl Size (min)` | 193.6 kB | 42 kB | ~200 kB |
| `Supported Encoding` | 33 | π [99](https://charset-normalizer.readthedocs.io/en/latest/user/support.html#supported-encodings) | 40 |
<p align="center">
<img src="https://i.imgflip.com/373iay.gif" alt="Reading Normalized Text" width="226"/><img src="https://media.tenor.com/images/c0180f70732a18b4965448d33adba3d0/tenor.gif" alt="Cat Reading Text" width="200"/>
</p>
*\*\* : They are clearly using specific code for a specific encoding even if covering most of used one*<br>
## β‘ Performance
This package offer better performance than its counterpart Chardet. Here are some numbers.
| Package | Accuracy | Mean per file (ms) | File per sec (est) |
|-----------------------------------------------|:--------:|:------------------:|:------------------:|
| [chardet](https://github.com/chardet/chardet) | 86 % | 63 ms | 16 file/sec |
| charset-normalizer | **98 %** | **10 ms** | 100 file/sec |
| Package | 99th percentile | 95th percentile | 50th percentile |
|-----------------------------------------------|:---------------:|:---------------:|:---------------:|
| [chardet](https://github.com/chardet/chardet) | 265 ms | 71 ms | 7 ms |
| charset-normalizer | 100 ms | 50 ms | 5 ms |
_updated as of december 2024 using CPython 3.12_
Chardet's performance on larger file (1MB+) are very poor. Expect huge difference on large payload.
> Stats are generated using 400+ files using default parameters. More details on used files, see GHA workflows.
> And yes, these results might change at any time. The dataset can be updated to include more files.
> The actual delays heavily depends on your CPU capabilities. The factors should remain the same.
> Keep in mind that the stats are generous and that Chardet accuracy vs our is measured using Chardet initial capability
> (e.g. Supported Encoding) Challenge-them if you want.
## β¨ Installation
Using pip:
```sh
pip install charset-normalizer -U
```
## π Basic Usage
### CLI
This package comes with a CLI.
```
usage: normalizer [-h] [-v] [-a] [-n] [-m] [-r] [-f] [-t THRESHOLD]
file [file ...]
The Real First Universal Charset Detector. Discover originating encoding used
on text file. Normalize text to unicode.
positional arguments:
files File(s) to be analysed
optional arguments:
-h, --help show this help message and exit
-v, --verbose Display complementary information about file if any.
Stdout will contain logs about the detection process.
-a, --with-alternative
Output complementary possibilities if any. Top-level
JSON WILL be a list.
-n, --normalize Permit to normalize input file. If not set, program
does not write anything.
-m, --minimal Only output the charset detected to STDOUT. Disabling
JSON output.
-r, --replace Replace file when trying to normalize it instead of
creating a new one.
-f, --force Replace file without asking if you are sure, use this
flag with caution.
-t THRESHOLD, --threshold THRESHOLD
Define a custom maximum amount of chaos allowed in
decoded content. 0. <= chaos <= 1.
--version Show version information and exit.
```
```bash
normalizer ./data/sample.1.fr.srt
```
or
```bash
python -m charset_normalizer ./data/sample.1.fr.srt
```
π Since version 1.4.0 the CLI produce easily usable stdout result in JSON format.
```json
{
"path": "/home/default/projects/charset_normalizer/data/sample.1.fr.srt",
"encoding": "cp1252",
"encoding_aliases": [
"1252",
"windows_1252"
],
"alternative_encodings": [
"cp1254",
"cp1256",
"cp1258",
"iso8859_14",
"iso8859_15",
"iso8859_16",
"iso8859_3",
"iso8859_9",
"latin_1",
"mbcs"
],
"language": "French",
"alphabets": [
"Basic Latin",
"Latin-1 Supplement"
],
"has_sig_or_bom": false,
"chaos": 0.149,
"coherence": 97.152,
"unicode_path": null,
"is_preferred": true
}
```
### Python
*Just print out normalized text*
```python
from charset_normalizer import from_path
results = from_path('./my_subtitle.srt')
print(str(results.best()))
```
*Upgrade your code without effort*
```python
from charset_normalizer import detect
```
The above code will behave the same as **chardet**. We ensure that we offer the best (reasonable) BC result possible.
See the docs for advanced usage : [readthedocs.io](https://charset-normalizer.readthedocs.io/en/latest/)
## π Why
When I started using Chardet, I noticed that it was not suited to my expectations, and I wanted to propose a
reliable alternative using a completely different method. Also! I never back down on a good challenge!
I **don't care** about the **originating charset** encoding, because **two different tables** can
produce **two identical rendered string.**
What I want is to get readable text, the best I can.
In a way, **I'm brute forcing text decoding.** How cool is that ? π
Don't confuse package **ftfy** with charset-normalizer or chardet. ftfy goal is to repair Unicode string whereas charset-normalizer to convert raw file in unknown encoding to unicode.
## π° How
- Discard all charset encoding table that could not fit the binary content.
- Measure noise, or the mess once opened (by chunks) with a corresponding charset encoding.
- Extract matches with the lowest mess detected.
- Additionally, we measure coherence / probe for a language.
**Wait a minute**, what is noise/mess and coherence according to **YOU ?**
*Noise :* I opened hundred of text files, **written by humans**, with the wrong encoding table. **I observed**, then
**I established** some ground rules about **what is obvious** when **it seems like** a mess (aka. defining noise in rendered text).
I know that my interpretation of what is noise is probably incomplete, feel free to contribute in order to
improve or rewrite it.
*Coherence :* For each language there is on earth, we have computed ranked letter appearance occurrences (the best we can). So I thought
that intel is worth something here. So I use those records against decoded text to check if I can detect intelligent design.
## β‘ Known limitations
- Language detection is unreliable when text contains two or more languages sharing identical letters. (eg. HTML (english tags) + Turkish content (Sharing Latin characters))
- Every charset detector heavily depends on sufficient content. In common cases, do not bother run detection on very tiny content.
## β οΈ About Python EOLs
**If you are running:**
- Python >=2.7,<3.5: Unsupported
- Python 3.5: charset-normalizer < 2.1
- Python 3.6: charset-normalizer < 3.1
- Python 3.7: charset-normalizer < 4.0
Upgrade your Python interpreter as soon as possible.
## π€ Contributing
Contributions, issues and feature requests are very much welcome.<br />
Feel free to check [issues page](https://github.com/ousret/charset_normalizer/issues) if you want to contribute.
## π License
Copyright Β© [Ahmed TAHRI @Ousret](https://github.com/Ousret).<br />
This project is [MIT](https://github.com/Ousret/charset_normalizer/blob/master/LICENSE) licensed.
Characters frequencies used in this project Β© 2012 [Denny VrandeΔiΔ](http://simia.net/letters/)
## πΌ For Enterprise
Professional support for charset-normalizer is available as part of the [Tidelift
Subscription][1]. Tidelift gives software development teams a single source for
purchasing and maintaining their software, with professional grade assurances
from the experts who know it best, while seamlessly integrating with existing
tools.
[1]: https://tidelift.com/subscription/pkg/pypi-charset-normalizer?utm_source=pypi-charset-normalizer&utm_medium=readme
[](https://www.bestpractices.dev/projects/7297)
|