1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
|
# -*- coding: utf-8 -*-
"""
Wrappers for some loading/saving functionality.
Author: Gertjan van den Burg
"""
import os
import warnings
from ._optional import import_optional_dependency
from .detect import Detector
from .dict_read_write import DictReader
from .dict_read_write import DictWriter
from .encoding import get_encoding
from .exceptions import NoDetectionResult
from .read import reader
from .write import writer
def stream_dicts(
filename, dialect=None, encoding=None, num_chars=None, verbose=False
):
"""Read a CSV file as a generator over dictionaries
This function streams the rows of the CSV file as dictionaries. The keys of
the dictionaries are assumed to be in the first row of the CSV file. The
dialect will be detected automatically, unless it is provided.
Parameters
----------
filename : str
Path of the CSV file
dialect : str, SimpleDialect, or csv.Dialect object
If the dialect is known, it can be provided here. This function uses
the Clevercsv :class:`clevercsv.DictReader` object, which supports
various dialect types (string, SimpleDialect, or csv.Dialect). If None,
the dialect will be detected.
encoding : str
The encoding of the file. If None, it is detected.
num_chars : int
Number of characters to use to detect the dialect. If None, use the
entire file.
Note that using less than the entire file will speed up detection, but
can reduce the accuracy of the detected dialect.
verbose: bool
Whether or not to show detection progress.
Returns
-------
rows: generator
Returns file as a generator over rows as dictionaries.
Raises
------
NoDetectionResult
When the dialect detection fails.
"""
if encoding is None:
encoding = get_encoding(filename)
with open(filename, "r", newline="", encoding=encoding) as fid:
if dialect is None:
data = fid.read(num_chars) if num_chars else fid.read()
dialect = Detector().detect(data, verbose=verbose)
fid.seek(0)
r = DictReader(fid, dialect=dialect)
for row in r:
yield row
def read_dicts(
filename, dialect=None, encoding=None, num_chars=None, verbose=False
):
"""Read a CSV file as a list of dictionaries
This function returns the rows of the CSV file as a list of dictionaries.
The keys of the dictionaries are assumed to be in the first row of the CSV
file. The dialect will be detected automatically, unless it is provided.
Parameters
----------
filename : str
Path of the CSV file
dialect : str, SimpleDialect, or csv.Dialect object
If the dialect is known, it can be provided here. This function uses
the Clevercsv :class:`clevercsv.DictReader` object, which supports
various dialect types (string, SimpleDialect, or csv.Dialect). If None,
the dialect will be detected.
encoding : str
The encoding of the file. If None, it is detected.
num_chars : int
Number of characters to use to detect the dialect. If None, use the
entire file.
Note that using less than the entire file will speed up detection, but
can reduce the accuracy of the detected dialect.
verbose: bool
Whether or not to show detection progress.
Returns
-------
rows: list
Returns rows of the file as a list of dictionaries.
Raises
------
NoDetectionResult
When the dialect detection fails.
"""
return list(
stream_dicts(
filename,
dialect=dialect,
encoding=encoding,
num_chars=num_chars,
verbose=verbose,
)
)
def read_table(
filename,
dialect=None,
encoding=None,
num_chars=None,
verbose=False,
):
"""Read a CSV file as a table (a list of lists)
This is a convenience function that reads a CSV file and returns the data
as a list of lists (= rows). The dialect will be detected automatically,
unless it is provided.
Parameters
----------
filename: str
Path of the CSV file
dialect: str, SimpleDialect, or csv.Dialect object
If the dialect is known, it can be provided here. This function uses
the CleverCSV :class:`clevercsv.reader` object, which supports various
dialect types (string, SimpleDialect, or csv.Dialect). If None, the
dialect will be detected.
encoding : str
The encoding of the file. If None, it is detected.
num_chars : int
Number of characters to use to detect the dialect. If None, use the
entire file.
Note that using less than the entire file will speed up detection, but
can reduce the accuracy of the detected dialect.
verbose: bool
Whether or not to show detection progress.
Returns
-------
rows: list
Returns rows as a list of lists.
Raises
------
NoDetectionResult
When the dialect detection fails.
"""
return list(
stream_table(
filename,
dialect=dialect,
encoding=encoding,
num_chars=num_chars,
verbose=verbose,
)
)
def stream_table(
filename,
dialect=None,
encoding=None,
num_chars=None,
verbose=False,
):
"""Read a CSV file as a generator over rows of a table
This is a convenience function that reads a CSV file and returns the data
as a generator of rows. The dialect will be detected automatically, unless
it is provided.
Parameters
----------
filename: str
Path of the CSV file
dialect: str, SimpleDialect, or csv.Dialect object
If the dialect is known, it can be provided here. This function uses
the CleverCSV :class:`clevercsv.reader` object, which supports various
dialect types (string, SimpleDialect, or csv.Dialect). If None, the
dialect will be detected.
encoding : str
The encoding of the file. If None, it is detected.
num_chars : int
Number of characters to use to detect the dialect. If None, use the
entire file.
Note that using less than the entire file will speed up detection, but
can reduce the accuracy of the detected dialect.
verbose: bool
Whether or not to show detection progress.
Returns
-------
rows: generator
Returns file as a generator over rows.
Raises
------
NoDetectionResult
When the dialect detection fails.
"""
if encoding is None:
encoding = get_encoding(filename)
with open(filename, "r", newline="", encoding=encoding) as fid:
if dialect is None:
data = fid.read(num_chars) if num_chars else fid.read()
dialect = Detector().detect(data, verbose=verbose)
if dialect is None:
raise NoDetectionResult()
fid.seek(0)
r = reader(fid, dialect)
yield from r
def read_dataframe(filename, *args, num_chars=None, **kwargs):
"""Read a CSV file to a Pandas dataframe
This function uses CleverCSV to detect the dialect, and then passes this to
the ``read_csv`` function in pandas. Additional arguments and keyword
arguments are passed to ``read_csv`` as well.
Parameters
----------
filename: str
The filename of the CSV file. At the moment, only local files are
supported.
*args:
Additional arguments for the ``pandas.read_csv`` function.
num_chars: int
Number of characters to use for dialect detection. If None, use the
entire file.
Note that using less than the entire file will speed up detection, but
can reduce the accuracy of the detected dialect.
**kwargs:
Additional keyword arguments for the ``pandas.read_csv`` function. You
can specify the file encoding here if needed, and it will be used
during dialect detection.
"""
if not (os.path.exists(filename) and os.path.isfile(filename)):
raise ValueError("Filename must be a regular file")
pd = import_optional_dependency("pandas")
# Use provided encoding or detect it, and record it for pandas
enc = kwargs.get("encoding") or get_encoding(filename)
kwargs["encoding"] = enc
with open(filename, "r", newline="", encoding=enc) as fid:
data = fid.read(num_chars) if num_chars else fid.read()
dialect = Detector().detect(data)
csv_dialect = dialect.to_csv_dialect()
# This is used to catch pandas' warnings when a dialect is supplied.
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
message="^Conflicting values for .*",
category=pd.errors.ParserWarning,
)
df = pd.read_csv(filename, *args, dialect=csv_dialect, **kwargs)
return df
def detect_dialect(
filename,
num_chars=None,
encoding=None,
verbose=False,
method="auto",
skip=True,
):
"""Detect the dialect of a CSV file
This is a utility function that simply returns the detected dialect of a
given CSV file.
Parameters
----------
filename : str
The filename of the CSV file.
num_chars : int
Number of characters to read for the detection. If None, the entire
file will be read. Note that limiting the number of characters can
reduce the accuracy of the detected dialect.
encoding : str
The file encoding of the CSV file. If None, it is detected.
verbose : bool
Enable verbose mode during detection.
method : str
Dialect detection method to use. Either 'normal' for normal form
detection, 'consistency' for the consistency measure, or 'auto' for
first normal and then consistency.
skip : bool
Skip computation of the type score for dialects with a low pattern
score.
Returns
-------
dialect : SimpleDialect
The detected dialect as a :class:`SimpleDialect`, or None if detection
failed.
"""
enc = encoding or get_encoding(filename)
with open(filename, "r", newline="", encoding=enc) as fp:
data = fp.read(num_chars) if num_chars else fp.read()
dialect = Detector().detect(
data, verbose=verbose, method=method, skip=skip
)
return dialect
def write_table(
table, filename, dialect="excel", transpose=False, encoding=None
):
"""Write a table (a list of lists) to a file
This is a convenience function for writing a table to a CSV file. If the
table has no rows, no output file is created.
Parameters
----------
table : list
A table as a list of lists. The table must have the same number of
cells in each row (taking the :attr:`transpose` flag into account).
filename : str
The filename of the CSV file to write the table to.
dialect : SimpleDialect or csv.Dialect
The dialect to use. The default is the 'excel' dialect, which
corresponds to RFC4180. This is done to encourage more standardized CSV
files.
transpose : bool
Transpose the table before writing.
encoding : str
Encoding to use to write the data to the file. Note that the default
encoding is platform dependent, which ensures compatibility with the
Python open() function. It thus defaults to
`locale.getpreferredencoding()`.
Raises
------
ValueError:
When the length of the rows is not constant.
"""
if not table:
return
if transpose:
table = list(map(list, zip(*table)))
if len(set(map(len, table))) > 1:
raise ValueError("Table doesn't have constant row length.")
with open(filename, "w", newline="", encoding=encoding) as fp:
w = writer(fp, dialect=dialect)
w.writerows(table)
def write_dicts(items, filename, dialect="excel", encoding=None):
"""Write a list of dicts to a file
This is a convenience function to write dicts to a file. The header is
extracted from the keys of the first item, so an OrderedDict is recommended
to control the order of the headers in the output. If the list of items is
empty, no output file is created.
Parameters
----------
items : list
List of dicts to export
filename : str
The filename of the CSV file to write the table to
dialect : str, SimpleDialect, or csv.Dialect
The dialect to use. The default is the 'excel' dialect, which
corresponds to RFC4180.
encoding : str
Encoding to use to write the data to the file. Note that the default
encoding is platform dependent, which ensures compatibility with the
Python open() function. It thus defaults to
`locale.getpreferredencoding()`.
"""
if not items:
return
fieldnames = list(items[0].keys())
with open(filename, "w", newline="", encoding=encoding) as fp:
w = DictWriter(fp, fieldnames=fieldnames, dialect=dialect)
w.writeheader()
w.writerows(items)
|