File: features.rst

package info (click to toggle)
python-clickhouse-driver 0.2.5-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,516 kB
  • sloc: python: 10,950; pascal: 42; makefile: 31; sh: 3
file content (546 lines) | stat: -rw-r--r-- 17,641 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
.. _features:

Features
========

- Compression support:

  * `LZ4/LZ4HC <http://www.lz4.org/>`_
  * `ZSTD <https://facebook.github.io/zstd/>`_

- TLS support (since server version 1.1.54304).


.. _external-tables:

External data for query processing
----------------------------------

You can pass `external data <https://clickhouse.com/docs/en/engines/table-engines/special/external-data/>`_
alongside with query:

    .. code-block:: python

        >>> tables = [{
        ...     'name': 'ext',
        ...     'structure': [('x', 'Int32'), ('y', 'Array(Int32)')],
        ...     'data': [
        ...         {'x': 100, 'y': [2, 4, 6, 8]},
        ...         {'x': 500, 'y': [1, 3, 5, 7]},
        ...     ]
        ... }]
        >>> client.execute(
        ...     'SELECT sum(x) FROM ext', external_tables=tables
        ... )
        [(600,)]


Settings
--------

There are a lot of ClickHouse server `settings <https://clickhouse.com/docs/en/operations/settings/settings/>`_.
Settings can be specified during Client initialization:

    .. code-block:: python

        # Set max number threads for all queries execution.
        >>> settings = {'max_threads': 2}
        >>> client = Client('localhost', settings=settings)

Each setting can be overridden in an ``execute``, ``execute_with_progress`` and
``execute_iter`` statement:

    .. code-block:: python

        # Set lower priority to query and limit max number threads
        # to execute the request.
        >>> settings = {'max_threads': 2, 'priority': 10}
        >>> client.execute('SHOW TABLES', settings=settings)
        [('first_table',)]


Compression
-----------

Native protocol supports two types of compression: `LZ4 <http://www.lz4.org/>`_ and
`ZSTD <https://facebook.github.io/zstd/>`_. When compression is enabled compressed data
should be hashed using `CityHash algorithm <https://github.com/google/cityhash>`_.
Additional packages should be installed in order by enable compression support, see :ref:`installation-pypi`.
Enabled client-side compression can save network traffic.

Client with compression support can be constructed as follows:

    .. code-block:: python

        >>> from clickhouse_driver import Client
        >>> client_with_lz4 = Client('localhost', compression=True)
        >>> client_with_lz4 = Client('localhost', compression='lz4')
        >>> client_with_zstd = Client('localhost', compression='zstd')


.. _compression-cityhash-notes:

CityHash algorithm notes
~~~~~~~~~~~~~~~~~~~~~~~~

Unfortunately ClickHouse server comes with built-in old version of CityHash algorithm (1.0.2).
That's why we can't use original `CityHash <https://pypi.org/project/cityhash>`_ package.
An older version is published separately at `PyPI <https://pypi.org/project/clickhouse-cityhash>`_.


Secure connection
-----------------

    .. code-block:: python

        >>> from clickhouse_driver import Client
        >>>
        >>> client = Client('localhost', secure=True)
        >>> # Using self-signed certificate.
        ... self_signed_client = Client(
        ...     'localhost', secure=True,
        ...     ca_certs='/etc/clickhouse-server/server.crt'
        ... )
        >>> # Disable verification.
        ... no_verifyed_client = Client(
        ...     'localhost', secure=True, verify=False
        ... )
        >>>
        >>> # Example of secured client with Let's Encrypt certificate.
        ... import certifi
        >>>
        >>> client = Client(
        ...     'remote-host', secure=True, ca_certs=certifi.where()
        ... )


Specifying query id
-------------------

You can manually set query identificator for each query. UUID for example:

    .. code-block:: python

        >>> from uuid import uuid4
        >>>
        >>> query_id = str(uuid4())
        >>> print(query_id)
        bbd7dea3-eb63-4a21-b727-f55b420a7223
        >>> client.execute(
        ...     'SELECT * FROM system.processes', query_id=query_id
        ... )
        [(1, 'default', 'bbd7dea3-eb63-4a21-b727-f55b420a7223', '127.0.0.1', 57664, 'default', 'bbd7dea3-eb63-4a21-b727-f55b420a7223', '127.0.0.1', 57664, 1, 'klebedev', 'klebedev-ThinkPad-T460', 'ClickHouse python-driver', 18, 10, 3, 54406, 0, '', '', 0.004916541, 0, 0, 0, 0, 0, 0, 0, 0, 'SELECT * FROM system.processes', (25,), ('Query', 'SelectQuery', 'NetworkReceiveElapsedMicroseconds', 'ContextLock', 'RWLockAcquiredReadLocks'), (1, 1, 54, 9, 1), ('use_uncompressed_cache', 'load_balancing', 'max_memory_usage'), ('0', 'random', '10000000000'))]

You can cancel query with specific id by sending another query with the same
query id if option `replace_running_query
<https://clickhouse.com/docs/en/operations/settings/settings/#replace-running-query>`_ is set to 1.

Query results are fetched by the same instance of Client that emitted query.

Retrieving results in columnar form
-----------------------------------

Columnar form sometimes can be more useful.

    .. code-block:: python

        >>> client.execute('SELECT arrayJoin(range(3))', columnar=True)
        [(0, 1, 2)]


Data types checking on INSERT
-----------------------------

Data types check is disabled for performance on ``INSERT`` queries.
You can turn it on by `types_check` option:

    .. code-block:: python

        >>> client.execute(
        ...     'INSERT INTO test (x) VALUES', [('abc', )],
        ...     types_check=True
        ... )
        1


Query execution statistics
--------------------------

Client stores statistics about last query execution. It can be obtained by
accessing `last_query` attribute.
Statistics is sent from ClickHouse server and calculated on client side.
`last_query` contains info about:

* profile: rows before limit

    .. code-block:: python

        >>> client.execute('SELECT arrayJoin(range(100)) LIMIT 3')
        [(0,), (1,), (2,)]
        >>> client.last_query.profile_info.rows_before_limit
        100

* progress:
    - processed rows;
    - processed bytes;
    - total rows;
    - written rows (*new in version 0.1.3*);
    - written bytes (*new in version 0.1.3*);

    .. code-block:: python

        >>> client.execute('SELECT max(number) FROM numbers(10)')
        [(9,)]
        >>> client.last_query.progress.rows
        10
        >>> client.last_query.progress.bytes
        80
        >>> client.last_query.progress.total_rows
        10

* elapsed time:

    .. code-block:: python

        >>> client.execute('SELECT sleep(1)')
        [(0,)]
        >>> client.last_query.elapsed
        1.0060372352600098


Receiving server logs
---------------------

Query logs can be received from server by using `send_logs_level` setting:

    .. code-block:: python

        >>> from logging.config import dictConfig
        >>> # Simple logging configuration.
        ... dictConfig({
        ...     'version': 1,
        ...     'disable_existing_loggers': False,
        ...     'formatters': {
        ...         'standard': {
        ...             'format': '%(asctime)s %(levelname)-8s %(name)s: %(message)s'
        ...         },
        ...     },
        ...     'handlers': {
        ...         'default': {
        ...             'level': 'INFO',
        ...             'formatter': 'standard',
        ...             'class': 'logging.StreamHandler',
        ...         },
        ...     },
        ...     'loggers': {
        ...         '': {
        ...             'handlers': ['default'],
        ...             'level': 'INFO',
        ...             'propagate': True
        ...         },
        ...     }
        ... })
        >>>
        >>> settings = {'send_logs_level': 'debug'}
        >>> client.execute('SELECT 1', settings=settings)
        2018-12-14 10:24:53,873 INFO     clickhouse_driver.log: [ klebedev-ThinkPad-T460 ] [ 25 ] {b328ad33-60e8-4012-b4cc-97f44a7b28f2} <Debug> executeQuery: (from 127.0.0.1:57762) SELECT 1
        2018-12-14 10:24:53,874 INFO     clickhouse_driver.log: [ klebedev-ThinkPad-T460 ] [ 25 ] {b328ad33-60e8-4012-b4cc-97f44a7b28f2} <Debug> executeQuery: Query pipeline:
        Expression
         Expression
          One

        2018-12-14 10:24:53,875 INFO     clickhouse_driver.log: [ klebedev-ThinkPad-T460 ] [ 25 ] {b328ad33-60e8-4012-b4cc-97f44a7b28f2} <Information> executeQuery: Read 1 rows, 1.00 B in 0.004 sec., 262 rows/sec., 262.32 B/sec.
        2018-12-14 10:24:53,875 INFO     clickhouse_driver.log: [ klebedev-ThinkPad-T460 ] [ 25 ] {b328ad33-60e8-4012-b4cc-97f44a7b28f2} <Debug> MemoryTracker: Peak memory usage (for query): 40.23 KiB.
        [(1,)]


Multiple hosts
--------------

*New in version 0.1.3.*

Additional connection points can be defined by using `alt_hosts`.
If main connection point is unavailable driver will use next one from `alt_hosts`.

This option is good for ClickHouse cluster with multiple replicas.

    .. code-block:: python

        >>> from clickhouse_driver import Client
        >>> client = Client('host1', alt_hosts='host2:1234,host3,host4:5678')

In example above on every *new* connection driver will use following sequence
of hosts if previous host is unavailable:

* host1:9000;
* host2:1234;
* host3:9000;
* host4:5678.

All queries within established connection will be sent to the same host.

You can specify `round_robin` parameter alongside with `alt_hosts`. The host
for query execution will be picked with round-robin algorithm.

    .. code-block:: python

        >>> from clickhouse_driver import Client
        >>> client = Client(
        ...     'host1', alt_hosts='host2:1234,host3', round_robin=True
        ... )
        >>> client.execute('SELECT 1')
        [(1,)]
        >>> client.execute('SELECT 2')
        [(2,)]
        >>> client.execute('SELECT 3')
        [(3,)]
        >>> client.execute('SELECT 4')
        [(4,)]


In this example queries will be executed on following hosts:

* `SELECT 1` will be executed on host1;
* `SELECT 2` will be executed on host2;
* `SELECT 3` will be executed on host3;
* `SELECT 4` will be executed on host1.

Connection to each host will be established on the first query to the host. All
established connections will be kept until client disconnection or disposal.

Python DB API 2.0
-----------------

*New in version 0.1.3.*

This driver is also implements `DB API 2.0 specification
<https://www.python.org/dev/peps/pep-0249/>`_. It can be useful for various
integrations.

Threads may share the module and connections.

Parameters are expected in Python extended format codes, e.g.
`...WHERE name=%(name)s`.

    .. code-block:: python

        >>> from clickhouse_driver import connect
        >>> conn = connect('clickhouse://localhost')
        >>> cursor = conn.cursor()
        >>>
        >>> cursor.execute('SHOW TABLES')
        >>> cursor.fetchall()
        [('test',)]
        >>> cursor.execute('DROP TABLE IF EXISTS test')
        >>> cursor.fetchall()
        []
        >>> cursor.execute('CREATE TABLE test (x Int32) ENGINE = Memory')
        >>> cursor.fetchall()
        []
        >>> cursor.executemany(
        ...     'INSERT INTO test (x) VALUES',
        ...     [{'x': 100}]
        ... )
        >>> cursor.rowcount
        1
        >>> cursor.executemany('INSERT INTO test (x) VALUES', [[200]])
        >>> cursor.rowcount
        1
        >>> cursor.execute(
        ...     'INSERT INTO test (x) '
        ...     'SELECT * FROM system.numbers LIMIT %(limit)s',
        ...     {'limit': 3}
        ... )
        >>> cursor.rowcount
        0
        >>> cursor.execute('SELECT sum(x) FROM test')
        >>> cursor.fetchall()
        [(303,)]

ClickHouse native protocol is synchronous: when you emit query in connection
you must read whole server response before sending next query through this
connection. To make DB API thread-safe each cursor should use it's own
connection to the server. In  Under the hood :ref:`dbapi-cursor` is wrapper
around pure :ref:`api-client`.

:ref:`dbapi-connection` class is just wrapper for handling multiple cursors
(clients) and do not initiate actual connections to the ClickHouse server.

There are some non-standard ClickHouse-related :ref:`Cursor methods
<dbapi-cursor>` for: external data, settings, etc.

For automatic disposal Connection and Cursor instances can be used as context
managers:

    .. code-block:: python

        >>> with connect('clickhouse://localhost') as conn:
        >>>     with conn.cursor() as cursor:
        >>>        cursor.execute('SHOW TABLES')
        >>>        print(cursor.fetchall())


You can use ``cursor_factory`` argument to get results as dicts or named tuples
(since version 0.2.4):

    .. code-block:: python

        >>> from clickhouse_driver.dbapi.extras import DictCursor
        >>> with connect('clickhouse://localhost') as conn:
        >>>     with conn.cursor(cursor_factory=DictCursor) as cursor:
        >>>        cursor.execute('SELECT * FROM system.tables')
        >>>        print(cursor.fetchall())

    .. code-block:: python

        >>> from clickhouse_driver.dbapi.extras import NamedTupleCursor
        >>> with connect('clickhouse://localhost') as conn:
        >>>     with conn.cursor(cursor_factory=NamedTupleCursor) as cursor:
        >>>        cursor.execute('SELECT * FROM system.tables')
        >>>        print(cursor.fetchall())


NumPy/Pandas support
--------------------

*New in version 0.1.6.*

Starting from version 0.1.6 package can SELECT and INSERT columns as NumPy
arrays. Additional packages are required for :ref:`installation-numpy-support`.

    .. code-block:: python

        >>> client = Client('localhost', settings={'use_numpy': True}):
        >>> client.execute(
        ...     'SELECT * FROM system.numbers LIMIT 10000',
        ...     columnar=True
        ... )
        [array([   0,    1,    2, ..., 9997, 9998, 9999], dtype=uint64)]


Supported types:

  * Float32/64
  * [U]Int8/16/32/64
  * Date/DateTime('timezone')/DateTime64('timezone')
  * String/FixedString(N)
  * LowCardinality(T)
  * Nullable(T)

Direct loading into NumPy arrays increases performance and lowers memory
requirements on large amounts of rows.

Direct loading into pandas DataFrame is also supported by using
`query_dataframe`:

    .. code-block:: python

        >>> client = Client('localhost', settings={'use_numpy': True})
        >>> client.query_dataframe('
        ...     'SELECT number AS x, (number + 100) AS y '
        ...     'FROM system.numbers LIMIT 10000'
        ... )
                 x      y
        0        0    100
        1        1    101
        2        2    102
        3        3    103
        4        4    104
        ...    ...    ...
        9995  9995  10095
        9996  9996  10096
        9997  9997  10097
        9998  9998  10098
        9999  9999  10099

        [10000 rows x 2 columns]

Writing pandas DataFrame is also supported with `insert_dataframe`:

    .. code-block:: python

        >>> client = Client('localhost', settings={'use_numpy': True})
        >>> client.execute(
        ...    'CREATE TABLE test (x Int64, y Int64) Engine = Memory'
        ... )
        >>> []
        >>> df = client.query_dataframe(
        ...     'SELECT number AS x, (number + 100) AS y '
        ...     'FROM system.numbers LIMIT 10000'
        ... )
        >>> client.insert_dataframe('INSERT INTO test VALUES', df)
        >>> 10000

Starting from version 0.2.2 nullable columns are also supported. Keep in mind
that nullable columns have ``object`` dtype. For convenience ``np.nan`` and
``None`` is supported as ``NULL`` values for inserting. But only ``None`` is
returned after selecting for ``NULL`` values.

    .. code-block:: python

        >>> client = Client('localhost', settings={'use_numpy': True})
        >>> client.execute(
        ...    'CREATE TABLE test ('
        ...    'a Nullable(Int64),
        ...    'b Nullable(Float64),
        ...    'c Nullable(String)'
        ...    ') Engine = Memory'
        ... )
        >>> []
        >>> df = pd.DataFrame({
        ...     'a': [1, None, None],
        ...     'b': [1.0, None, np.nan],
        ...     'c': ['a', None, np.nan],
        ... }, dtype=object)
        >>> client.insert_dataframe('INSERT INTO test VALUES', df)
        3
        >>> client.query_dataframe('SELECT * FROM test')
              a     b     c
        0     1     1     a
        1  None  None  None
        2  None   NaN  None

It's important to specify `dtype` during dataframe creation:

    .. code-block:: python

        >>> bad_df = pd.DataFrame({
        ...     'a': [1, None, None],
        ...     'b': [1.0, None, np.nan],
        ...     'c': ['a', None, np.nan],
        ... })
        >>> bad_df
             a    b     c
        0  1.0  1.0     a
        1  NaN  NaN  None
        2  NaN  NaN   NaN
        >>> good_df = pd.DataFrame({
        ...     'a': [1, None, None],
        ...     'b': [1.0, None, np.nan],
        ...     'c': ['a', None, np.nan],
        ... }, dtype=object)
        >>> good_df
              a     b     c
        0     1     1     a
        1  None  None  None
        2  None   NaN   NaN

As you can see float column ``b`` in ``bad_df`` has two ``NaN`` values.
But ``NaN`` and ``None`` is not the same for float point numbers.
``NaN`` is ``float('nan')`` where ``None`` is representing ``NULL``.

Automatic disposal
------------------

*New in version 0.2.2.*

Each Client instance can be used as a context manager:

    .. code-block:: python

        >>> with Client('localhost') as client:
        >>>     client.execute('SELECT 1')


Upon exit, any established connection to the ClickHouse server will be closed
automatically.