File: types.rst

package info (click to toggle)
python-clickhouse-driver 0.2.5-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,516 kB
  • sloc: python: 10,950; pascal: 42; makefile: 31; sh: 3
file content (424 lines) | stat: -rw-r--r-- 10,499 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

Supported types
===============

Each ClickHouse type is deserialized to a corresponding Python type when SELECT queries are prepared.
When serializing INSERT queries, clickhouse-driver accepts a broader range of Python types.
The following ClickHouse types are supported by clickhouse-driver:


[U]Int8/16/32/64/128/256
------------------------

INSERT types: :class:`int`, :class:`long`.

SELECT type: :class:`int`.


Float32/64
----------

INSERT types: :class:`float`, :class:`int`, :class:`long`.

SELECT type: :class:`float`.


Date/Date32
-----------

*Date32 support is new in version 0.2.2.*

INSERT types: :class:`~datetime.date`, :class:`~datetime.datetime`.

SELECT type: :class:`~datetime.date`.


DateTime('timezone')/DateTime64('timezone')
-------------------------------------------

*Timezone support is new in version 0.0.11.*
*DateTime64 support is new in version 0.1.3.*

INSERT types: :class:`~datetime.datetime`, :class:`int`, :class:`long`.

Integers are interpreted as seconds without timezone (UNIX timestamps). Integers can be used when
insertion of datetime column is a bottleneck.

SELECT type: :class:`~datetime.datetime`.

Setting `use_client_time_zone <https://clickhouse.com/docs/en/sql-reference/data-types/datetime/#usage-remarks>`_ is taken into consideration.

You can cast DateTime column to integers if you are facing performance issues when selecting large amount of rows.

Due to Python's current limitations minimal DateTime64 resolution is one microsecond.


String/FixedString(N)
---------------------

INSERT types: :class:`str`/:func:`basestring <basestring>`, :class:`bytes`. See note below.

SELECT type: :class:`str`/:func:`basestring <basestring>`, :class:`bytes`. See note below.

String column is encoded/decoded with encoding specified by ``strings_encoding`` setting. Default encoding is UTF-8.

You can specify custom encoding:

    .. code-block:: python

        >>> settings = {'strings_encoding': 'cp1251'}
        >>> rows = client.execute(
        ...     'SELECT * FROM table_with_strings',
        ...     settings=settings
        ... )

Encoding is applied to all string fields in query.

String columns can be returned without any decoding. In this case return values are `bytes`:

    .. code-block:: python

        >>> settings = {'strings_as_bytes': True}
        >>> rows = client.execute(
        ...     'SELECT * FROM table_with_strings',
        ...     settings=settings
        ... )


If a column has FixedString type, upon returning from SELECT it may contain trailing zeroes
in accordance with ClickHouse's storage format. Trailing zeroes are stripped by driver for convenience.

During SELECT, if a string cannot be decoded with specified encoding, it will return as :class:`bytes`.

During INSERT, if ``strings_as_bytes`` setting is not specified and string cannot be encoded with encoding,
a ``UnicodeEncodeError`` will be raised.


Enum8/16
--------

INSERT types: :class:`~enum.Enum`, :class:`int`, :class:`long`, :class:`str`/:func:`basestring <basestring>`.

SELECT type: :class:`str`/:func:`basestring <basestring>`.

    .. code-block:: python

        >>> from enum import IntEnum
        >>>
        >>> class MyEnum(IntEnum):
        ...     foo = 1
        ...     bar = 2
        ...
        >>> client.execute('DROP TABLE IF EXISTS test')
        []
        >>> client.execute('''
        ...     CREATE TABLE test
        ...     (
        ...         x Enum8('foo' = 1, 'bar' = 2)
        ...     ) ENGINE = Memory
        ... ''')
        []
        >>> client.execute(
        ...     'INSERT INTO test (x) VALUES',
        ...     [{'x': MyEnum.foo}, {'x': 'bar'}, {'x': 1}]
        ... )
        3
        >>> client.execute('SELECT * FROM test')
        [('foo',), ('bar',), ('foo',)]

Currently clickhouse-driver can't handle empty enum value due to Python's `Enum` mechanics.
Enum member name must be not empty. See `issue`_ and  `workaround`_.

.. _issue: https://github.com/mymarilyn/clickhouse-driver/issues/48
.. _workaround: https://github.com/mymarilyn/clickhouse-driver/issues/48#issuecomment-412480613


Array(T)
--------

INSERT types: :class:`list`, :class:`tuple`.

SELECT type: :class:`list`.

*Versions before 0.1.4:* SELECT type: :class:`tuple`.


    .. code-block:: python

        >>> client.execute('DROP TABLE IF EXISTS test')
        []
        >>> client.execute(
        ...     'CREATE TABLE test (x Array(Int32)) '
        ...     'ENGINE = Memory'
        ... )
        []
        >>> client.execute(
        ...     'INSERT INTO test (x) VALUES',
        ...     [{'x': [10, 20, 30]}, {'x': [11, 21, 31]}]
        ... )
        2
        >>> client.execute('SELECT * FROM test')
        [((10, 20, 30),), ((11, 21, 31),)]


Nullable(T)
-----------

INSERT types: :data:`~types.NoneType`, ``T``.

SELECT type: :data:`~types.NoneType`, ``T``.


Bool
----

INSERT types: :class:`bool`,

SELECT type: :class:`bool`.


UUID
----

INSERT types: :class:`str`/:func:`basestring <basestring>`, :class:`~uuid.UUID`.

SELECT type: :class:`~uuid.UUID`.


Decimal
-------

*New in version 0.0.16.*

INSERT types: :class:`~decimal.Decimal`, :class:`float`, :class:`int`, :class:`long`.

SELECT type: :class:`~decimal.Decimal`.

Supported subtypes:

* Decimal(P, S).
* Decimal32(S).
* Decimal64(S).
* Decimal128(S).
* Decimal256(S). *New in version 0.2.1.*

IPv4/IPv6
---------

*New in version 0.0.19.*

INSERT types: :class:`~ipaddress.IPv4Address`/:class:`~ipaddress.IPv6Address`, :class:`int`, :class:`long`, :class:`str`/:func:`basestring <basestring>`.

SELECT type: :class:`~ipaddress.IPv4Address`/:class:`~ipaddress.IPv6Address`.

    .. code-block:: python

        >>> from ipaddress import IPv4Address, IPv6Address
        >>>
        >>> client.execute('DROP TABLE IF EXISTS test')
        []
        >>> client.execute(
        ...     'CREATE TABLE test (x IPv4) '
        ...     'ENGINE = Memory'
        ... )
        []
        >>> client.execute(
        ...     'INSERT INTO test (x) VALUES', [
        ...     {'x': '192.168.253.42'},
        ...     {'x': 167772161},
        ...     {'x': IPv4Address('192.168.253.42')}
        ... ])
        3
        >>> client.execute('SELECT * FROM test')
        [(IPv4Address('192.168.253.42'),), (IPv4Address('10.0.0.1'),), (IPv4Address('192.168.253.42'),)]
        >>>
        >>> client.execute('DROP TABLE IF EXISTS test')
        []
        >>> client.execute(
        ...     'CREATE TABLE test (x IPv6) '
        ...     'ENGINE = Memory'
        ... )
        []
        >>> client.execute(
        ...     'INSERT INTO test (x) VALUES', [
        ...     {'x': '79f4:e698:45de:a59b:2765:28e3:8d3a:35ae'},
        ...     {'x': IPv6Address('12ff:0000:0000:0000:0000:0000:0000:0001')},
        ...     {'x': b"y\xf4\xe6\x98E\xde\xa5\x9b'e(\xe3\x8d:5\xae"}
        ... ])
        3
        >>> client.execute('SELECT * FROM test')
        [(IPv6Address('79f4:e698:45de:a59b:2765:28e3:8d3a:35ae'),), (IPv6Address('12ff::1'),), (IPv6Address('79f4:e698:45de:a59b:2765:28e3:8d3a:35ae'),)]
        >>>


LowCardinality(T)
-----------------

*New in version 0.0.20.*

INSERT types: ``T``.

SELECT type: ``T``.


SimpleAggregateFunction(F, T)
-----------------------------

*New in version 0.0.21.*

INSERT types: ``T``.

SELECT type: ``T``.

AggregateFunctions for `AggregatingMergeTree` Engine are not supported.


Tuple(T1, T2, ...)
------------------

*New in version 0.1.4.*

INSERT types: :class:`list`, :class:`tuple`.

SELECT type: :class:`tuple`.


Nested(flatten_nested=1, default)
---------------------------------

Nested type is represented by sequence of arrays when flatten_nested=1. In example below actual
columns for are ``col.name`` and ``col.version``.

    .. code-block:: sql

      :) CREATE TABLE test_nested (col Nested(name String, version UInt32)) Engine = Memory;

      CREATE TABLE test_nested
      (
          `col` Nested(name String, version UInt32)
      )
      ENGINE = Memory

      Ok.

      0 rows in set. Elapsed: 0.005 sec.

      :) DESCRIBE TABLE test_nested FORMAT TSV;

      DESCRIBE TABLE test_nested
      FORMAT TSV

      col.name	Array(String)
      col.version	Array(UInt32)

      2 rows in set. Elapsed: 0.004 sec.

Inserting data into nested column in ``clickhouse-client``:

    .. code-block:: sql

      :) INSERT INTO test_nested VALUES (['a', 'b', 'c'], [100, 200, 300]);

      INSERT INTO test_nested VALUES

      Ok.

      1 rows in set. Elapsed: 0.003 sec.

Inserting data into nested column with ``clickhouse-driver``:

    .. code-block:: python

      client.execute('INSERT INTO test_nested VALUES', [
          (['a', 'b', 'c'], [100, 200, 300]),
      ])

Nested(flatten_nested=0)
------------------------

Nested type is represented by array of named tuples when flatten_nested=0.

    .. code-block:: sql

      :) SET flatten_nested = 0;

      SET flatten_nested = 0

      Ok.

      0 rows in set. Elapsed: 0.006 sec. 

      :) CREATE TABLE test_nested (col Nested(name String, version UInt32)) Engine = Memory;

      CREATE TABLE test_nested
      (
          `col` Nested(name String, version UInt32)
      )
      ENGINE = Memory

      Ok.

      0 rows in set. Elapsed: 0.005 sec.

      :) DESCRIBE TABLE test_nested FORMAT TSV;

      DESCRIBE TABLE test_nested
      FORMAT TSV

      col	Nested(name String, version UInt32)

      1 rows in set. Elapsed: 0.004 sec.

Inserting data into nested column in ``clickhouse-client``:

    .. code-block:: sql

      :) INSERT INTO test_nested VALUES ([('a', 100), ('b', 200), ('c', 300)]);

      INSERT INTO test_nested VALUES

      Ok.

      1 rows in set. Elapsed: 0.003 sec.

Inserting data into nested column with ``clickhouse-driver``:

    .. code-block:: python

      client.execute(
          'INSERT INTO test_nested VALUES', [
          ([('a', 100), ('b', 200), ('c', 300)], )
      ])
      # or
      client.execute(
          'INSERT INTO test_nested VALUES', [
          {'col': [
              {'name': 'a', 'version': 100},
              {'name': 'b', 'version': 200},
              {'name': 'c', 'version': 300}
          ]}
      ])

Map(key, value)
------------------

*New in version 0.2.1.*

INSERT types: :class:`dict`.

SELECT type: :class:`dict`.


Geo
---

*New in version 0.2.4.*

Point, Ring, Polygon, MultiPolygon.

These types are just aliases:

* Point: Tuple(Float64, Float64)
* Ring: Array(Point)
* Polygon: Array(Ring)
* MultiPolygon: Array(Polygon)