File: dataframes.py

package info (click to toggle)
python-cloudkittyclient 5.3.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 748 kB
  • sloc: python: 3,512; makefile: 26; sh: 2
file content (77 lines) | stat: -rw-r--r-- 2,654 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# Copyright 2019 Objectif Libre
#
#    Licensed under the Apache License, Version 2.0 (the "License"); you may
#    not use this file except in compliance with the License. You may obtain
#    a copy of the License at
#
#         http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
#    WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
#    License for the specific language governing permissions and limitations
#    under the License.
#
import json

from cloudkittyclient.common import base
from cloudkittyclient import exc


class DataframesManager(base.BaseManager):
    """Class used to handle /v2/dataframes endpoint"""

    url = '/v2/dataframes'

    def add_dataframes(self, **kwargs):
        """Add DataFrames to the storage backend. Returns nothing.

        :param dataframes: List of dataframes to add to the storage backend.
        :type dataframes: list of dataframes
        """

        dataframes = kwargs.get('dataframes')

        if not dataframes:
            raise exc.ArgumentRequired("'dataframes' argument is required")

        if not isinstance(dataframes, str):
            try:
                dataframes = json.dumps(dataframes)
            except TypeError:
                raise exc.InvalidArgumentError(
                    "'dataframes' must be either a string"
                    "or a JSON serializable object.")

        url = self.get_url(None, kwargs)
        return self.api_client.post(
            url,
            data=dataframes,
        )

    def get_dataframes(self, **kwargs):
        """Returns a paginated list of DataFrames.

        This support filters and datetime framing.

        :param offset: Index of the first dataframe that should be returned.
        :type offset: int
        :param limit: Maximal number of dataframes to return.
        :type limit: int
        :param filters: Optional dict of filters to select data on.
        :type filters: dict
        :param begin: Start of the period to gather data from
        :type begin: datetime.datetime
        :param end: End of the period to gather data from
        :type end: datetime.datetime
        """
        kwargs['filters'] = ','.join(
            '{}:{}'.format(k, v) for k, v in
            (kwargs.get('filters', None) or {}).items()
        )

        authorized_args = [
            'offset', 'limit', 'filters', 'begin', 'end']

        url = self.get_url(None, kwargs, authorized_args=authorized_args)
        return self.api_client.get(url).json()