File: hierarchical.py

package info (click to toggle)
python-cluster 1.4.1.post3-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 412 kB
  • sloc: python: 812; makefile: 146; sh: 4
file content (220 lines) | stat: -rw-r--r-- 9,036 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#
# This is part of "python-cluster". A library to group similar items together.
# Copyright (C) 2006    Michel Albert
#
# This library is free software; you can redistribute it and/or modify it
# under the terms of the GNU Lesser General Public License as published by the
# Free Software Foundation; either version 2.1 of the License, or (at your
# option) any later version.
# This library is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
# for more details.
# You should have received a copy of the GNU Lesser General Public License
# along with this library; if not, write to the Free Software Foundation,
# Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#

from functools import partial
import logging

from cluster.cluster import Cluster
from cluster.matrix import Matrix
from cluster.method.base import BaseClusterMethod
from cluster.linkage import single, complete, average, uclus


logger = logging.getLogger(__name__)


class HierarchicalClustering(BaseClusterMethod):
    """
    Implementation of the hierarchical clustering method as explained in a
    tutorial_ by *matteucc*.

    Object prerequisites:

    * Items must be sortable (See `issue #11`_)
    * Items must be hashable.

    .. _issue #11: https://github.com/exhuma/python-cluster/issues/11
    .. _tutorial: http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial_html/hierarchical.html

    Example:

        >>> from cluster import HierarchicalClustering
        >>> # or: from cluster import *
        >>> cl = HierarchicalClustering([123,334,345,242,234,1,3],
                lambda x,y: float(abs(x-y)))
        >>> cl.getlevel(90)
        [[345, 334], [234, 242], [123], [3, 1]]

    Note that all of the returned clusters are more than 90 (``getlevel(90)``)
    apart.

    See :py:class:`~cluster.method.base.BaseClusterMethod` for more details.

    :param data: The collection of items to be clustered.
    :param distance_function: A function which takes two elements of ``data``
        and returns a distance between both elements (note that the distance
        should not be returned as negative value!)
    :param linkage: The method used to determine the distance between two
        clusters. See :py:meth:`~.HierarchicalClustering.set_linkage_method` for
        possible values.
    :param num_processes: If you want to use multiprocessing to split up the
        work and run ``genmatrix()`` in parallel, specify num_processes > 1 and
        this number of workers will be spun up, the work split up amongst them
        evenly.
    :param progress_callback: A function to be called on each iteration to
        publish the progress. The function is called with two integer arguments
        which represent the total number of elements in the cluster, and the
        remaining elements to be clustered.
    """

    def __init__(self, data, distance_function, linkage=None, num_processes=1,
                 progress_callback=None):
        if not linkage:
            linkage = single
        logger.info("Initializing HierarchicalClustering object with linkage "
                    "method %s", linkage)
        BaseClusterMethod.__init__(self, sorted(data), distance_function)
        self.set_linkage_method(linkage)
        self.num_processes = num_processes
        self.progress_callback = progress_callback
        self.__cluster_created = False

    def publish_progress(self, total, current):
        """
        If a progress function was supplied, this will call that function with
        the total number of elements, and the remaining number of elements.

        :param total: The total number of elements.
        :param remaining: The remaining number of elements.
        """
        if self.progress_callback:
            self.progress_callback(total, current)

    def set_linkage_method(self, method):
        """
        Sets the method to determine the distance between two clusters.

        :param method: The method to use. It can be one of ``'single'``,
            ``'complete'``, ``'average'`` or ``'uclus'``, or a callable. The
            callable should take two collections as parameters and return a
            distance value between both collections.
        """
        if method == 'single':
            self.linkage = single
        elif method == 'complete':
            self.linkage = complete
        elif method == 'average':
            self.linkage = average
        elif method == 'uclus':
            self.linkage = uclus
        elif hasattr(method, '__call__'):
            self.linkage = method
        else:
            raise ValueError('distance method must be one of single, '
                             'complete, average of uclus')

    def cluster(self, matrix=None, level=None, sequence=None):
        """
        Perform hierarchical clustering.

        :param matrix: The 2D list that is currently under processing. The
            matrix contains the distances of each item with each other
        :param level: The current level of clustering
        :param sequence: The sequence number of the clustering
        """
        logger.info("Performing cluster()")

        if matrix is None:
            # create level 0, first iteration (sequence)
            level = 0
            sequence = 0
            matrix = []

        # if the matrix only has two rows left, we are done
        linkage = partial(self.linkage, distance_function=self.distance)
        initial_element_count = len(self._data)
        while len(matrix) > 2 or matrix == []:

            item_item_matrix = Matrix(self._data,
                                      linkage,
                                      True,
                                      0)
            item_item_matrix.genmatrix(self.num_processes)
            matrix = item_item_matrix.matrix

            smallestpair = None
            mindistance = None
            rowindex = 0  # keep track of where we are in the matrix
            # find the minimum distance
            for row in matrix:
                cellindex = 0  # keep track of where we are in the matrix
                for cell in row:
                    # if we are not on the diagonal (which is always 0)
                    # and if this cell represents a new minimum...
                    cell_lt_mdist = cell < mindistance if mindistance else False
                    if ((rowindex != cellindex) and
                            (cell_lt_mdist or smallestpair is None)):
                        smallestpair = (rowindex, cellindex)
                        mindistance = cell
                    cellindex += 1
                rowindex += 1

            sequence += 1
            level = matrix[smallestpair[1]][smallestpair[0]]
            cluster = Cluster(level, self._data[smallestpair[0]],
                              self._data[smallestpair[1]])

            # maintain the data, by combining the the two most similar items
            # in the list we use the min and max functions to ensure the
            # integrity of the data.  imagine: if we first remove the item
            # with the smaller index, all the rest of the items shift down by
            # one. So the next index will be wrong. We could simply adjust the
            # value of the second "remove" call, but we don't know the order
            # in which they come. The max and min approach clarifies that
            self._data.remove(self._data[max(smallestpair[0],
                                             smallestpair[1])])  # remove item 1
            self._data.remove(self._data[min(smallestpair[0],
                                             smallestpair[1])])  # remove item 2
            self._data.append(cluster)  # append item 1 and 2 combined

            self.publish_progress(initial_element_count, len(self._data))

        # all the data is in one single cluster. We return that and stop
        self.__cluster_created = True
        logger.info("Call to cluster() is complete")
        return

    def getlevel(self, threshold):
        """
        Returns all clusters with a maximum distance of *threshold* in between
        each other

        :param threshold: the maximum distance between clusters.

        See :py:meth:`~cluster.cluster.Cluster.getlevel`
        """

        # if it's not worth clustering, just return the data
        if len(self._input) <= 1:
            return self._input

        # initialize the cluster if not yet done
        if not self.__cluster_created:
            self.cluster()

        return self._data[0].getlevel(threshold)

    def display(self):
        """
        Prints a simple dendogram-like representation of the full cluster
        to the console.
        """
        # initialize the cluster if not yet done
        if not self.__cluster_created:
            self.cluster()

        self._data[0].display()