1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
#
# This is part of "python-cluster". A library to group similar items together.
# Copyright (C) 2006 Michel Albert
#
# This library is free software; you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation; either version 2.1 of the License, or (at your option)
# any later version.
# This library is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
# details.
# You should have received a copy of the GNU Lesser General Public License
# along with this library; if not, write to the Free Software Foundation, Inc.,
# 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
"""
Tests for hierarchical clustering.
.. note::
Even though the results are lists, the order of items in the resulting
clusters is non-deterministic. This should be taken into consideration when
writing "expected" values!
"""
from difflib import SequenceMatcher
from math import sqrt
from sys import hexversion
import unittest
from cluster import HierarchicalClustering
class Py23TestCase(unittest.TestCase):
def __init__(self, *args, **kwargs):
super(Py23TestCase, self).__init__(*args, **kwargs)
if hexversion < 0x030000f0:
self.assertCItemsEqual = self.assertItemsEqual
else:
self.assertCItemsEqual = self.assertCountEqual
class HClusterSmallListTestCase(Py23TestCase):
"""
Test for Bug #1516204
"""
def testClusterLen1(self):
"""
Testing if hierarchical clustering a set of length 1 returns a set of
length 1
"""
cl = HierarchicalClustering([876], lambda x, y: abs(x - y))
self.assertCItemsEqual([876], cl.getlevel(40))
def testClusterLen0(self):
"""
Testing if hierarchical clustering an empty list returns an empty list
"""
cl = HierarchicalClustering([], lambda x, y: abs(x - y))
self.assertEqual([], cl.getlevel(40))
class HClusterIntegerTestCase(Py23TestCase):
def setUp(self):
self.__data = [791, 956, 676, 124, 564, 84, 24, 365, 594, 940, 398,
971, 131, 365, 542, 336, 518, 835, 134, 391]
def testSingleLinkage(self):
"Basic Hierarchical Clustering test with integers"
cl = HierarchicalClustering(self.__data, lambda x, y: abs(x - y))
result = cl.getlevel(40)
# sort the values to make the tests less prone to algorithm changes
result = [sorted(_) for _ in result]
self.assertCItemsEqual([
[24],
[336, 365, 365, 391, 398],
[518, 542, 564, 594],
[676],
[791],
[835],
[84, 124, 131, 134],
[940, 956, 971],
], result)
def testCompleteLinkage(self):
"Basic Hierarchical Clustering test with integers"
cl = HierarchicalClustering(self.__data,
lambda x, y: abs(x - y),
linkage='complete')
result = cl.getlevel(40)
# sort the values to make the tests less prone to algorithm changes
result = sorted([sorted(_) for _ in result])
expected = [
[24],
[84],
[124, 131, 134],
[336, 365, 365],
[391, 398],
[518],
[542, 564],
[594],
[676],
[791],
[835],
[940, 956, 971],
]
self.assertEqual(result, expected)
def testUCLUS(self):
"Basic Hierarchical Clustering test with integers"
cl = HierarchicalClustering(self.__data,
lambda x, y: abs(x - y),
linkage='uclus')
expected = [
[24],
[84],
[124, 131, 134],
[336, 365, 365, 391, 398],
[518, 542, 564],
[594],
[676],
[791],
[835],
[940, 956, 971],
]
result = sorted([sorted(_) for _ in cl.getlevel(40)])
self.assertEqual(result, expected)
def testAverageLinkage(self):
cl = HierarchicalClustering(self.__data,
lambda x, y: abs(x - y),
linkage='average')
# TODO: The current test-data does not really trigger a difference
# between UCLUS and "average" linkage.
expected = [
[24],
[84],
[124, 131, 134],
[336, 365, 365, 391, 398],
[518, 542, 564],
[594],
[676],
[791],
[835],
[940, 956, 971],
]
result = sorted([sorted(_) for _ in cl.getlevel(40)])
self.assertEqual(result, expected)
def testUnmodifiedData(self):
cl = HierarchicalClustering(self.__data, lambda x, y: abs(x - y))
new_data = []
[new_data.extend(_) for _ in cl.getlevel(40)]
self.assertEqual(sorted(new_data), sorted(self.__data))
def testMultiprocessing(self):
cl = HierarchicalClustering(self.__data, lambda x, y: abs(x - y),
num_processes=4)
new_data = []
[new_data.extend(_) for _ in cl.getlevel(40)]
self.assertEqual(sorted(new_data), sorted(self.__data))
class HClusterStringTestCase(Py23TestCase):
def sim(self, x, y):
sm = SequenceMatcher(lambda x: x in ". -", x, y)
return 1 - sm.ratio()
def setUp(self):
self.__data = ("Lorem ipsum dolor sit amet consectetuer adipiscing "
"elit Ut elit Phasellus consequat ultricies mi Sed "
"congue leo at neque Nullam").split()
def testDataTypes(self):
"Test for bug #?"
cl = HierarchicalClustering(self.__data, self.sim)
for item in cl.getlevel(0.5):
self.assertEqual(
type(item), type([]),
"Every item should be a list!")
def testCluster(self):
"Basic Hierachical clustering test with strings"
self.skipTest('These values lead to non-deterministic results. '
'This makes it untestable!')
cl = HierarchicalClustering(self.__data, self.sim)
self.assertEqual([
['ultricies'],
['Sed'],
['Phasellus'],
['mi'],
['Nullam'],
['sit', 'elit', 'elit', 'Ut', 'amet', 'at'],
['leo', 'Lorem', 'dolor'],
['congue', 'neque', 'consectetuer', 'consequat'],
['adipiscing'],
['ipsum'],
], cl.getlevel(0.5))
def testUnmodifiedData(self):
cl = HierarchicalClustering(self.__data, self.sim)
new_data = []
[new_data.extend(_) for _ in cl.getlevel(0.5)]
self.assertEqual(sorted(new_data), sorted(self.__data))
class HClusterTuplesTestCase(Py23TestCase):
'''
Test case to cover the case where the data contains tuple-items
See Github issue #20
'''
def testSingleLinkage(self):
"Basic Hierarchical Clustering test with integers"
def euclidian_distance(a, b):
return sqrt(sum([pow(z[0] - z[1], 2) for z in zip(a, b)]))
self.__data = [(1, 1), (1, 2), (1, 3)]
cl = HierarchicalClustering(self.__data, euclidian_distance)
result = cl.getlevel(40)
self.assertIsNotNone(result)
class Issue28TestCase(Py23TestCase):
'''
Test case to cover the case where the data consist
of dictionary keys, and the distance function executes
on the values these keys are associated with in the
dictionary, rather than the keys themselves.
Behaviour for this test case differs between Python2.7
and Python3.5: on 2.7 the test behaves as expected,
See Github issue #28.
'''
def testIssue28(self):
"Issue28 (Hierarchical Clustering)"
points1D = {
'p4' : 5, 'p2' : 6, 'p7' : 10,
'p9' : 120, 'p10' : 121, 'p11' : 119,
}
distance_func = lambda a,b : abs(points1D[a]-points1D[b])
cl = HierarchicalClustering(list(points1D.keys()), distance_func)
result = cl.getlevel(20)
self.assertIsNotNone(result)
if __name__ == '__main__':
import logging
suite = unittest.TestSuite((
unittest.makeSuite(HClusterIntegerTestCase),
unittest.makeSuite(HClusterSmallListTestCase),
unittest.makeSuite(HClusterStringTestCase),
unittest.makeSuite(Issue28TestCase),
))
logging.basicConfig(level=logging.DEBUG)
unittest.TextTestRunner(verbosity=2).run(suite)
|