1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
#
# This is part of "python-cluster". A library to group similar items together.
# Copyright (C) 2006 Michel Albert
#
# This library is free software; you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation; either version 2.1 of the License, or (at your option)
# any later version.
# This library is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
# details.
# You should have received a copy of the GNU Lesser General Public License
# along with this library; if not, write to the Free Software Foundation, Inc.,
# 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
from cluster import (KMeansClustering, ClusteringError)
import unittest
def compare_list(x, y):
"""
Compare lists by content. Ordering does not matter.
Returns True if both lists contain the same items (and are of identical
length)
"""
cmpx = [set(cluster) for cluster in x]
cmpy = [set(cluster) for cluster in y]
all_ok = True
for cset in cmpx:
all_ok &= cset in cmpy
for cset in cmpy:
all_ok &= cset in cmpx
return all_ok
class KClusterSmallListTestCase(unittest.TestCase):
def testClusterLen1(self):
"Testing that a search space of length 1 returns only one cluster"
cl = KMeansClustering([876])
self.assertEqual([876], cl.getclusters(2))
self.assertEqual([876], cl.getclusters(5))
def testClusterLen0(self):
"Testing if clustering an empty set, returns an empty set"
cl = KMeansClustering([])
self.assertEqual([], cl.getclusters(2))
self.assertEqual([], cl.getclusters(7))
class KCluster2DTestCase(unittest.TestCase):
def testClusterCount(self):
"Test that asking for less than 2 clusters raises an error"
cl = KMeansClustering([876, 123, 344, 676],
distance=lambda x, y: abs(x - y))
self.assertRaises(ClusteringError, cl.getclusters, 0)
self.assertRaises(ClusteringError, cl.getclusters, 1)
def testNonsenseCluster(self):
"""
Test that asking for more clusters than data-items available raises an
error
"""
cl = KMeansClustering([876, 123], distance=lambda x, y: abs(x - y))
self.assertRaises(ClusteringError, cl.getclusters, 5)
def testUniformLength(self):
"""
Test if there is an item in the cluster that has a different
cardinality
"""
data = [(1, 5), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6, 7), (7, 3),
(8, 1), (8, 2), (8), (9, 2), (9, 3)]
self.assertRaises(ValueError, KMeansClustering, data)
def testPointDoubling(self):
"test for bug #1604868"
data = [(18, 13), (15, 12), (17, 12), (18, 12), (19, 12), (16, 11),
(18, 11), (19, 10), (0, 0), (1, 4), (1, 2), (2, 3), (4, 1),
(4, 3), (5, 2), (6, 1)]
cl = KMeansClustering(data)
clusters = cl.getclusters(2)
expected = [[(18, 13), (15, 12), (17, 12), (18, 12), (19, 12),
(16, 11), (18, 11), (19, 10)],
[(0, 0), (1, 4), (1, 2), (2, 3), (4, 1),
(5, 2), (6, 1), (4, 3)]]
self.assertTrue(compare_list(
clusters,
expected),
"Elements differ!\n%s\n%s" % (clusters, expected))
def testClustering(self):
"Basic clustering test"
data = [(8, 2), (7, 3), (2, 6), (3, 5), (3, 6), (1, 5), (8, 1),
(3, 4), (8, 3), (9, 2), (2, 5), (9, 3)]
cl = KMeansClustering(data)
self.assertEqual(
cl.getclusters(2),
[[(8, 2), (8, 1), (8, 3), (7, 3), (9, 2), (9, 3)],
[(3, 5), (1, 5), (3, 4), (2, 6), (2, 5), (3, 6)]])
def testUnmodifiedData(self):
"Basic clustering test"
data = [(8, 2), (7, 3), (2, 6), (3, 5), (3, 6), (1, 5), (8, 1),
(3, 4), (8, 3), (9, 2), (2, 5), (9, 3)]
cl = KMeansClustering(data)
new_data = []
[new_data.extend(_) for _ in cl.getclusters(2)]
self.assertEqual(sorted(new_data), sorted(data))
class KClusterSFBugs(unittest.TestCase):
def testLostFunctionReference(self):
"test for bug #1727558"
cl = KMeansClustering([(1, 1), (20, 40), (20, 41)],
lambda x, y: x + y)
clusters = cl.getclusters(3)
expected = [(1, 1), (20, 40), (20, 41)]
self.assertTrue(compare_list(
clusters,
expected),
"Elements differ!\n%s\n%s" % (clusters, expected))
def testMultidimArray(self):
from random import random
data = []
for _ in range(200):
data.append([random(), random()])
cl = KMeansClustering(data, lambda p0, p1: (
p0[0] - p1[0]) ** 2 + (p0[1] - p1[1]) ** 2)
cl.getclusters(10)
|