File: test_kmeans.py

package info (click to toggle)
python-cluster 1.4.1.post3-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 412 kB
  • sloc: python: 812; makefile: 146; sh: 4
file content (141 lines) | stat: -rw-r--r-- 5,116 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#
# This is part of "python-cluster". A library to group similar items together.
# Copyright (C) 2006    Michel Albert
#
# This library is free software; you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation; either version 2.1 of the License, or (at your option)
# any later version.
# This library is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
# details.
# You should have received a copy of the GNU Lesser General Public License
# along with this library; if not, write to the Free Software Foundation, Inc.,
# 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#

from cluster import (KMeansClustering, ClusteringError)
import unittest


def compare_list(x, y):
    """
    Compare lists by content. Ordering does not matter.
    Returns True if both lists contain the same items (and are of identical
    length)
    """

    cmpx = [set(cluster) for cluster in x]
    cmpy = [set(cluster) for cluster in y]

    all_ok = True

    for cset in cmpx:
        all_ok &= cset in cmpy

    for cset in cmpy:
        all_ok &= cset in cmpx

    return all_ok


class KClusterSmallListTestCase(unittest.TestCase):

    def testClusterLen1(self):
        "Testing that a search space of length 1 returns only one cluster"
        cl = KMeansClustering([876])
        self.assertEqual([876], cl.getclusters(2))
        self.assertEqual([876], cl.getclusters(5))

    def testClusterLen0(self):
        "Testing if clustering an empty set, returns an empty set"
        cl = KMeansClustering([])
        self.assertEqual([], cl.getclusters(2))
        self.assertEqual([], cl.getclusters(7))


class KCluster2DTestCase(unittest.TestCase):

    def testClusterCount(self):
        "Test that asking for less than 2 clusters raises an error"
        cl = KMeansClustering([876, 123, 344, 676],
                              distance=lambda x, y: abs(x - y))
        self.assertRaises(ClusteringError, cl.getclusters, 0)
        self.assertRaises(ClusteringError, cl.getclusters, 1)

    def testNonsenseCluster(self):
        """
        Test that asking for more clusters than data-items available raises an
        error
        """
        cl = KMeansClustering([876, 123], distance=lambda x, y: abs(x - y))
        self.assertRaises(ClusteringError, cl.getclusters, 5)

    def testUniformLength(self):
        """
        Test if there is an item in the cluster that has a different
        cardinality
        """
        data = [(1, 5), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6, 7), (7, 3),
                (8, 1), (8, 2), (8), (9, 2), (9, 3)]
        self.assertRaises(ValueError, KMeansClustering, data)

    def testPointDoubling(self):
        "test for bug #1604868"
        data = [(18, 13), (15, 12), (17, 12), (18, 12), (19, 12), (16, 11),
                (18, 11), (19, 10), (0, 0), (1, 4), (1, 2), (2, 3), (4, 1),
                (4, 3), (5, 2), (6, 1)]
        cl = KMeansClustering(data)
        clusters = cl.getclusters(2)
        expected = [[(18, 13), (15, 12), (17, 12), (18, 12), (19, 12),
                     (16, 11), (18, 11), (19, 10)],
                    [(0, 0), (1, 4), (1, 2), (2, 3), (4, 1),
                     (5, 2), (6, 1), (4, 3)]]
        self.assertTrue(compare_list(
            clusters,
            expected),
            "Elements differ!\n%s\n%s" % (clusters, expected))

    def testClustering(self):
        "Basic clustering test"
        data = [(8, 2), (7, 3), (2, 6), (3, 5), (3, 6), (1, 5), (8, 1),
                (3, 4), (8, 3), (9, 2), (2, 5), (9, 3)]
        cl = KMeansClustering(data)
        self.assertEqual(
            cl.getclusters(2),
            [[(8, 2), (8, 1), (8, 3), (7, 3), (9, 2), (9, 3)],
             [(3, 5), (1, 5), (3, 4), (2, 6), (2, 5), (3, 6)]])

    def testUnmodifiedData(self):
        "Basic clustering test"
        data = [(8, 2), (7, 3), (2, 6), (3, 5), (3, 6), (1, 5), (8, 1),
                (3, 4), (8, 3), (9, 2), (2, 5), (9, 3)]
        cl = KMeansClustering(data)

        new_data = []
        [new_data.extend(_) for _ in cl.getclusters(2)]
        self.assertEqual(sorted(new_data), sorted(data))


class KClusterSFBugs(unittest.TestCase):

    def testLostFunctionReference(self):
        "test for bug #1727558"
        cl = KMeansClustering([(1, 1), (20, 40), (20, 41)],
                              lambda x, y: x + y)
        clusters = cl.getclusters(3)
        expected = [(1, 1), (20, 40), (20, 41)]
        self.assertTrue(compare_list(
            clusters,
            expected),
            "Elements differ!\n%s\n%s" % (clusters, expected))

    def testMultidimArray(self):
        from random import random
        data = []
        for _ in range(200):
            data.append([random(), random()])
        cl = KMeansClustering(data, lambda p0, p1: (
            p0[0] - p1[0]) ** 2 + (p0[1] - p1[1]) ** 2)
        cl.getclusters(10)