File: index.rst

package info (click to toggle)
python-cluster 1.4.1.post3-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 412 kB
  • sloc: python: 812; makefile: 146; sh: 4
file content (112 lines) | stat: -rw-r--r-- 2,264 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
Welcome to python-cluster's documentation!
==========================================

Index
-----

.. toctree::
   :maxdepth: 1

   changelog


Introduction
------------

Implementation of cluster algorithms in pure Python.

As this is exacuted in the Python runtime, the code runs slower than similar
implementations in compiled languages. You gain however to run this on pretty
much any Python object. The different clustering methods have different
prerequisites however which are mentioned in the different implementations.



Example for K-Means Clustering
------------------------------

::

    from cluster import KMeansClustering
    data = [
        (8, 2),
        (7, 3),
        (2, 6),
        (3, 5),
        (3, 6),
        (1, 5),
        (8, 1),
        (3, 4),
        (8, 3),
        (9, 2),
        (2, 5),
        (9, 3)
    ]
    cl = KMeansClustering(data)
    cl.getclusters(2)

The above code would give the following result::

    [
        [(8, 2), (8, 1), (8, 3), (7, 3), (9, 2), (9, 3)],
        [(3, 5), (1, 5), (3, 4), (2, 6), (2, 5), (3, 6)]
    ]


Example for Hierarchical Clustering
-----------------------------------

::

    from cluster import HierarchicalClustering
    data = [791, 956, 676, 124, 564, 84, 24, 365, 594, 940, 398,
            971, 131, 365, 542, 336, 518, 835, 134, 391]
    cl = HierarchicalClustering(data)
    cl.getlevel(40)

The above code would give the following result::

    [
        [24],
        [84, 124, 131, 134],
        [336, 365, 365, 391, 398],
        [676],
        [594, 518, 542, 564],
        [940, 956, 971],
        [791],
        [835],
    ]


Using :py:meth:`~cluster.method.hierarchical.HierarchicalClustering.getlevel()`
returns clusters where the distance between each cluster is no less than
*level*.

.. note::

    Due to a bug_ in earlier releases, the elements of the input data *must be*
    sortable!

    .. _bug: https://github.com/exhuma/python-cluster/issues/11


API
---

.. toctree::
   :maxdepth: 1

   apidoc/cluster
   apidoc/cluster.matrix
   apidoc/cluster.method.base
   apidoc/cluster.method.hierarchical
   apidoc/cluster.method.kmeans
   apidoc/cluster.util

Indices and tables
==================

* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`