File: README.md

package info (click to toggle)
python-cmaes 0.11.1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 408 kB
  • sloc: python: 3,115; sh: 88; makefile: 4
file content (465 lines) | stat: -rw-r--r-- 16,577 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
# cmaes

[![Software License](https://img.shields.io/badge/license-MIT-brightgreen.svg?style=flat-square)](./LICENSE) [![PyPI - Downloads](https://img.shields.io/pypi/dw/cmaes)](https://pypistats.org/packages/cmaes)

:whale: [**Paper is now available on arXiv!**](https://arxiv.org/abs/2402.01373)

*Simple* and *Practical* Python library for CMA-ES.
Please refer to the [paper](https://arxiv.org/abs/2402.01373) [Nomura and Shibata 2024] for detailed information, including the design philosophy and advanced examples.

![visualize-six-hump-camel](https://user-images.githubusercontent.com/5564044/73486622-db5cff00-43e8-11ea-98fb-8246dbacab6d.gif)

## Installation

Supported Python versions are 3.7 or later.

```
$ pip install cmaes
```

Or you can install via [conda-forge](https://anaconda.org/conda-forge/cmaes).

```
$ conda install -c conda-forge cmaes
```

## Usage

This library provides an "ask-and-tell" style interface. We employ the standard version of CMA-ES [Hansen 2016].

```python
import numpy as np
from cmaes import CMA

def quadratic(x1, x2):
    return (x1 - 3) ** 2 + (10 * (x2 + 2)) ** 2

if __name__ == "__main__":
    optimizer = CMA(mean=np.zeros(2), sigma=1.3)

    for generation in range(50):
        solutions = []
        for _ in range(optimizer.population_size):
            x = optimizer.ask()
            value = quadratic(x[0], x[1])
            solutions.append((x, value))
            print(f"#{generation} {value} (x1={x[0]}, x2 = {x[1]})")
        optimizer.tell(solutions)
```

And you can use this library via [Optuna](https://github.com/optuna/optuna) [Akiba et al. 2019], an automatic hyperparameter optimization framework.
Optuna's built-in CMA-ES sampler which uses this library under the hood is available from [v1.3.0](https://github.com/optuna/optuna/releases/tag/v1.3.0) and stabled at [v2.0.0](https://github.com/optuna/optuna/releases/tag/v2.2.0).
See [the documentation](https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.CmaEsSampler.html) or [v2.0 release blog](https://medium.com/optuna/optuna-v2-3165e3f1fc2) for more details.

```python
import optuna

def objective(trial: optuna.Trial):
    x1 = trial.suggest_uniform("x1", -4, 4)
    x2 = trial.suggest_uniform("x2", -4, 4)
    return (x1 - 3) ** 2 + (10 * (x2 + 2)) ** 2

if __name__ == "__main__":
    sampler = optuna.samplers.CmaEsSampler()
    study = optuna.create_study(sampler=sampler)
    study.optimize(objective, n_trials=250)
```


## CMA-ES variants

#### Learning Rate Adaptation CMA-ES [Nomura et al. 2023]
The performance of the CMA-ES can deteriorate when faced with *difficult* problems such as multimodal or noisy ones, if its hyperparameter values are not properly configured.
The Learning Rate Adaptation CMA-ES (LRA-CMA) effectively addresses this issue by autonomously adjusting the learning rate.
Consequently, LRA-CMA eliminates the need for expensive hyperparameter tuning.

LRA-CMA can be used by simply adding `lr_adapt=True` to the initialization of `CMA()`.

<details>

<summary>Source code</summary>

```python
import numpy as np
from cmaes import CMA


def rastrigin(x):
    dim = len(x)
    return 10 * dim + sum(x**2 - 10 * np.cos(2 * np.pi * x))


if __name__ == "__main__":
    dim = 40
    optimizer = CMA(mean=3*np.ones(dim), sigma=2.0, lr_adapt=True)

    for generation in range(50000):
        solutions = []
        for _ in range(optimizer.population_size):
            x = optimizer.ask()
            value = rastrigin(x)
            if generation % 500 == 0:
                print(f"#{generation} {value}")
            solutions.append((x, value))
        optimizer.tell(solutions)

        if optimizer.should_stop():
            break
```

The full source code is available [here](./examples/lra_cma.py).

</details>



#### Warm Starting CMA-ES [Nomura et al. 2021]

Warm Starting CMA-ES (WS-CMA) is a method that transfers prior knowledge from similar tasks through the initialization of the CMA-ES.
This is useful especially when the evaluation budget is limited (e.g., hyperparameter optimization of machine learning algorithms).

![benchmark-lightgbm-toxic](https://github.com/c-bata/benchmark-warm-starting-cmaes/raw/main/result.png)

<details>
<summary>Source code</summary>

```python
import numpy as np
from cmaes import CMA, get_warm_start_mgd

def source_task(x1: float, x2: float) -> float:
    b = 0.4
    return (x1 - b) ** 2 + (x2 - b) ** 2

def target_task(x1: float, x2: float) -> float:
    b = 0.6
    return (x1 - b) ** 2 + (x2 - b) ** 2

if __name__ == "__main__":
    # Generate solutions from a source task
    source_solutions = []
    for _ in range(1000):
        x = np.random.random(2)
        value = source_task(x[0], x[1])
        source_solutions.append((x, value))

    # Estimate a promising distribution of the source task,
    # then generate parameters of the multivariate gaussian distribution.
    ws_mean, ws_sigma, ws_cov = get_warm_start_mgd(
        source_solutions, gamma=0.1, alpha=0.1
    )
    optimizer = CMA(mean=ws_mean, sigma=ws_sigma, cov=ws_cov)

    # Run WS-CMA-ES
    print(" g    f(x1,x2)     x1      x2  ")
    print("===  ==========  ======  ======")
    while True:
        solutions = []
        for _ in range(optimizer.population_size):
            x = optimizer.ask()
            value = target_task(x[0], x[1])
            solutions.append((x, value))
            print(
                f"{optimizer.generation:3d}  {value:10.5f}"
                f"  {x[0]:6.2f}  {x[1]:6.2f}"
            )
        optimizer.tell(solutions)

        if optimizer.should_stop():
            break
```

The full source code is available [here](./examples/ws_cma.py).

</details>


#### CMA-ES with Margin [Hamano et al. 2022]

CMA-ES with Margin (CMAwM) introduces a lower bound on the marginal probability for each discrete dimension, ensuring that samples avoid being fixed to a single point.
This method can be applied to mixed spaces consisting of continuous (such as float) and discrete elements (including integer and binary types).

|CMA|CMAwM|
|---|---|
|![CMA-ES](https://github.com/CyberAgentAILab/cmaes/assets/27720055/41d33c4b-b80b-42af-9f62-6d22f19dbae5)|![CMA-ESwM](https://github.com/CyberAgentAILab/cmaes/assets/27720055/9035deaa-6222-4720-a417-c31c765f3228)|

The above figures are taken from [EvoConJP/CMA-ES_with_Margin](https://github.com/EvoConJP/CMA-ES_with_Margin).

<details>
<summary>Source code</summary>

```python
import numpy as np
from cmaes import CMAwM


def ellipsoid_onemax(x, n_zdim):
    n = len(x)
    n_rdim = n - n_zdim
    r = 10
    if len(x) < 2:
        raise ValueError("dimension must be greater one")
    ellipsoid = sum([(1000 ** (i / (n_rdim - 1)) * x[i]) ** 2 for i in range(n_rdim)])
    onemax = n_zdim - (0.0 < x[(n - n_zdim) :]).sum()
    return ellipsoid + r * onemax


def main():
    binary_dim, continuous_dim = 10, 10
    dim = binary_dim + continuous_dim
    bounds = np.concatenate(
        [
            np.tile([-np.inf, np.inf], (continuous_dim, 1)),
            np.tile([0, 1], (binary_dim, 1)),
        ]
    )
    steps = np.concatenate([np.zeros(continuous_dim), np.ones(binary_dim)])
    optimizer = CMAwM(mean=np.zeros(dim), sigma=2.0, bounds=bounds, steps=steps)
    print(" evals    f(x)")
    print("======  ==========")

    evals = 0
    while True:
        solutions = []
        for _ in range(optimizer.population_size):
            x_for_eval, x_for_tell = optimizer.ask()
            value = ellipsoid_onemax(x_for_eval, binary_dim)
            evals += 1
            solutions.append((x_for_tell, value))
            if evals % 300 == 0:
                print(f"{evals:5d}  {value:10.5f}")
        optimizer.tell(solutions)

        if optimizer.should_stop():
            break


if __name__ == "__main__":
    main()
```

Source code is also available [here](./examples/cmaes_with_margin.py).

</details>


#### CatCMA [Hamano et al. 2024]
CatCMA is a method for mixed-category optimization problems, which is the problem of simultaneously optimizing continuous and categorical variables. CatCMA employs the joint probability distribution of multivariate Gaussian and categorical distributions as the search distribution.

![CatCMA](https://github.com/CyberAgentAILab/cmaes/assets/27720055/f91443b6-d71b-4849-bfc3-095864f7c58c)

<details>
<summary>Source code</summary>

```python
import numpy as np
from cmaes import CatCMA


def sphere_com(x, c):
    dim_co = len(x)
    dim_ca = len(c)
    if dim_co < 2:
        raise ValueError("dimension must be greater one")
    sphere = sum(x * x)
    com = dim_ca - sum(c[:, 0])
    return sphere + com


def rosenbrock_clo(x, c):
    dim_co = len(x)
    dim_ca = len(c)
    if dim_co < 2:
        raise ValueError("dimension must be greater one")
    rosenbrock = sum(100 * (x[:-1] ** 2 - x[1:]) ** 2 + (x[:-1] - 1) ** 2)
    clo = dim_ca - (c[:, 0].argmin() + c[:, 0].prod() * dim_ca)
    return rosenbrock + clo


def mc_proximity(x, c, cat_num):
    dim_co = len(x)
    dim_ca = len(c)
    if dim_co < 2:
        raise ValueError("dimension must be greater one")
    if dim_co != dim_ca:
        raise ValueError(
            "number of dimensions of continuous and categorical variables "
            "must be equal in mc_proximity"
        )

    c_index = np.argmax(c, axis=1) / cat_num
    return sum((x - c_index) ** 2) + sum(c_index)


if __name__ == "__main__":
    cont_dim = 5
    cat_dim = 5
    cat_num = np.array([3, 4, 5, 5, 5])
    # cat_num = 3 * np.ones(cat_dim, dtype=np.int64)
    optimizer = CatCMA(mean=3.0 * np.ones(cont_dim), sigma=1.0, cat_num=cat_num)

    for generation in range(200):
        solutions = []
        for _ in range(optimizer.population_size):
            x, c = optimizer.ask()
            value = mc_proximity(x, c, cat_num)
            if generation % 10 == 0:
                print(f"#{generation} {value}")
            solutions.append(((x, c), value))
        optimizer.tell(solutions)

        if optimizer.should_stop():
            break
```

The full source code is available [here](./examples/catcma.py).

</details>


#### Separable CMA-ES [Ros and Hansen 2008]

Sep-CMA-ES is an algorithm that limits the covariance matrix to a diagonal form.
This reduction in the number of parameters enhances scalability, making Sep-CMA-ES well-suited for high-dimensional optimization tasks.
Additionally, the learning rate for the covariance matrix is increased, leading to superior performance over the (full-covariance) CMA-ES on separable functions.

<details>
<summary>Source code</summary>

```python
import numpy as np
from cmaes import SepCMA

def ellipsoid(x):
    n = len(x)
    if len(x) < 2:
        raise ValueError("dimension must be greater one")
    return sum([(1000 ** (i / (n - 1)) * x[i]) ** 2 for i in range(n)])

if __name__ == "__main__":
    dim = 40
    optimizer = SepCMA(mean=3 * np.ones(dim), sigma=2.0)
    print(" evals    f(x)")
    print("======  ==========")

    evals = 0
    while True:
        solutions = []
        for _ in range(optimizer.population_size):
            x = optimizer.ask()
            value = ellipsoid(x)
            evals += 1
            solutions.append((x, value))
            if evals % 3000 == 0:
                print(f"{evals:5d}  {value:10.5f}")
        optimizer.tell(solutions)

        if optimizer.should_stop():
            break
```

Full source code is available [here](./examples/sep_cma.py).

</details>

#### IPOP-CMA-ES [Auger and Hansen 2005]

IPOP-CMA-ES is a method that involves restarting the CMA-ES with an incrementally increasing population size, as described below.

![visualize-ipop-cmaes-himmelblau](https://user-images.githubusercontent.com/5564044/88472274-f9e12480-cf4b-11ea-8aff-2a859eb51a15.gif)

<details>
<summary>Source code</summary>

```python
import math
import numpy as np
from cmaes import CMA

def ackley(x1, x2):
    # https://www.sfu.ca/~ssurjano/ackley.html
    return (
        -20 * math.exp(-0.2 * math.sqrt(0.5 * (x1 ** 2 + x2 ** 2)))
        - math.exp(0.5 * (math.cos(2 * math.pi * x1) + math.cos(2 * math.pi * x2)))
        + math.e + 20
    )

if __name__ == "__main__":
    bounds = np.array([[-32.768, 32.768], [-32.768, 32.768]])
    lower_bounds, upper_bounds = bounds[:, 0], bounds[:, 1]

    mean = lower_bounds + (np.random.rand(2) * (upper_bounds - lower_bounds))
    sigma = 32.768 * 2 / 5  # 1/5 of the domain width
    optimizer = CMA(mean=mean, sigma=sigma, bounds=bounds, seed=0)

    for generation in range(200):
        solutions = []
        for _ in range(optimizer.population_size):
            x = optimizer.ask()
            value = ackley(x[0], x[1])
            solutions.append((x, value))
            print(f"#{generation} {value} (x1={x[0]}, x2 = {x[1]})")
        optimizer.tell(solutions)

        if optimizer.should_stop():
            # popsize multiplied by 2 (or 3) before each restart.
            popsize = optimizer.population_size * 2
            mean = lower_bounds + (np.random.rand(2) * (upper_bounds - lower_bounds))
            optimizer = CMA(mean=mean, sigma=sigma, population_size=popsize)
            print(f"Restart CMA-ES with popsize={popsize}")
```

Full source code is available [here](./examples/ipop_cma.py).

</details>

## Citation
If you use our library in your work, please cite our paper:

Masahiro Nomura, Masashi Shibata.<br>
**cmaes : A Simple yet Practical Python Library for CMA-ES**<br>
[https://arxiv.org/abs/2402.01373](https://arxiv.org/abs/2402.01373)

Bibtex:
```
@article{nomura2024cmaes,
  title={cmaes : A Simple yet Practical Python Library for CMA-ES},
  author={Nomura, Masahiro and Shibata, Masashi},
  journal={arXiv preprint arXiv:2402.01373},
  year={2024}
}
```

## Contact
For any questions, feel free to raise an issue or contact me at nomura_masahiro@cyberagent.co.jp.

## Links

**Projects using cmaes:**

* [Optuna](https://github.com/optuna/optuna) : A hyperparameter optimization framework that supports CMA-ES using this library under the hood.
* [Kubeflow/Katib](https://www.kubeflow.org/docs/components/katib/katib-config/) : Kubernetes-based system for hyperparameter tuning and neural architecture search
* (If you are using `cmaes` in your project and would like it to be listed here, please submit a GitHub issue.)

**Other libraries:**

We have great respect for all libraries involved in CMA-ES.

* [pycma](https://github.com/CMA-ES/pycma) : Most renowned CMA-ES implementation, created and maintained by Nikolaus Hansen.
* [pymoo](https://github.com/msu-coinlab/pymoo) : A library for multi-objective optimization in Python.
* [evojax](https://github.com/google/evojax) : evojax offers a JAX-port of this library.
* [evosax](https://github.com/RobertTLange/evosax) : evosax provides a JAX-based implementation of CMA-ES and sep-CMA-ES, inspired by this library.

**References:**

* [Akiba et al. 2019] [T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna: A Next-generation Hyperparameter Optimization Framework, KDD, 2019.](https://dl.acm.org/citation.cfm?id=3330701)
* [Auger and Hansen 2005] [A. Auger, N. Hansen, A Restart CMA Evolution Strategy with Increasing Population Size, CEC, 2005.](http://www.cmap.polytechnique.fr/~nikolaus.hansen/cec2005ipopcmaes.pdf)
* [Hamano et al. 2022] [R. Hamano, S. Saito, M. Nomura, S. Shirakawa, CMA-ES with Margin: Lower-Bounding Marginal Probability for Mixed-Integer Black-Box Optimization, GECCO, 2022.](https://arxiv.org/abs/2205.13482)
* [Hamano et al. 2024] [R. Hamano, S. Saito, M. Nomura, K. Uchida, S. Shirakawa, CatCMA : Stochastic Optimization for Mixed-Category Problems, GECCO, 2024.](https://arxiv.org/abs/2405.09962)
* [Hansen 2016] [N. Hansen, The CMA Evolution Strategy: A Tutorial. arXiv:1604.00772, 2016.](https://arxiv.org/abs/1604.00772)
* [Nomura et al. 2021] [M. Nomura, S. Watanabe, Y. Akimoto, Y. Ozaki, M. Onishi, Warm Starting CMA-ES for Hyperparameter Optimization, AAAI, 2021.](https://arxiv.org/abs/2012.06932)
* [Nomura et al. 2023] [M. Nomura, Y. Akimoto, I. Ono, CMA-ES with Learning
Rate Adaptation: Can CMA-ES with Default Population Size Solve Multimodal
and Noisy Problems?, GECCO, 2023.](https://arxiv.org/abs/2304.03473)
* [Nomura and Shibata 2024] [M. Nomura, M. Shibata, cmaes : A Simple yet Practical Python Library for CMA-ES, arXiv:2402.01373, 2024.](https://arxiv.org/abs/2402.01373)
* [Ros and Hansen 2008] [R. Ros, N. Hansen, A Simple Modification in CMA-ES Achieving Linear Time and Space Complexity, PPSN, 2008.](https://hal.inria.fr/inria-00287367/document)