1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
|
from __future__ import annotations
import math
import sys
import numpy as np
from typing import cast
from typing import Optional
_EPS = 1e-8
_MEAN_MAX = 1e32
_SIGMA_MAX = 1e32
class DXNESIC:
"""DX-NES-IC stochastic optimizer class with ask-and-tell interface.
Example:
.. code::
import numpy as np
from cmaes import DXNESIC
def quadratic(x1, x2):
return (x1 - 3) ** 2 + (10 * (x2 + 2)) ** 2
optimizer = DXNESIC(mean=np.zeros(2), sigma=1.3)
for generation in range(50):
solutions = []
for _ in range(optimizer.population_size):
# Ask a parameter
x = optimizer.ask()
value = quadratic(x[0], x[1])
solutions.append((x, value))
print(f"#{generation} {value} (x1={x[0]}, x2 = {x[1]})")
# Tell evaluation values.
optimizer.tell(solutions)
Args:
mean:
Initial mean vector of multi-variate gaussian distributions.
sigma:
Initial standard deviation of covariance matrix.
bounds:
Lower and upper domain boundaries for each parameter (optional).
n_max_resampling:
A maximum number of resampling parameters (default: 100).
If all sampled parameters are infeasible, the last sampled one
will be clipped with lower and upper bounds.
seed:
A seed number (optional).
population_size:
A population size (optional).
cov:
A covariance matrix (optional).
"""
# Paper: https://ieeexplore.ieee.org/abstract/document/9504865
def __init__(
self,
mean: np.ndarray,
sigma: float,
bounds: Optional[np.ndarray] = None,
n_max_resampling: int = 100,
seed: Optional[int] = None,
population_size: Optional[int] = None,
):
assert sigma > 0, "sigma must be non-zero positive value"
assert np.all(
np.abs(mean) < _MEAN_MAX
), f"Abs of all elements of mean vector must be less than {_MEAN_MAX}"
n_dim = len(mean)
assert n_dim > 1, "The dimension of mean must be larger than 1"
if population_size is None:
population_size = 4 + math.floor(3 * math.log(n_dim))
assert population_size > 0, "popsize must be non-zero positive value."
w_rank_hat = np.log(population_size / 2 + 1) - np.log(
np.arange(1, population_size + 1)
)
w_rank_hat[np.where(w_rank_hat < 0)] = 0
w_rank = w_rank_hat / sum(w_rank_hat) - (1.0 / population_size)
mu_eff = 1 / sum((w_rank + (1.0 / population_size)) ** 2)
# learning rate for the cumulation for the step-size control
c_sigma = (mu_eff + 2) / (n_dim + mu_eff + 5)
assert (
c_sigma < 1
), "invalid learning rate for cumulation for the step-size control"
# distance weight parameter
h_inv = _get_h_inv(n_dim)
self._n_dim = n_dim
self._popsize = population_size
self._mu_eff = mu_eff
self._h_inv = h_inv
self._c_sigma = c_sigma
# E||N(0, I)||
self._chi_n = math.sqrt(self._n_dim) * (
1.0 - (1.0 / (4.0 * self._n_dim)) + 1.0 / (21.0 * (self._n_dim**2))
)
# weights
self._w_rank = w_rank
self._w_rank_hat = w_rank_hat
# for antithetic sampling
self._zsym: Optional[np.ndarray] = None
# learning rate
self._eta_mean = 1.0
self._eta_move_sigma = 1.0
self._c_gamma = 1.0 / (3.0 * (n_dim - 1.0))
self._d_gamma = min(1.0, n_dim / population_size)
self._gamma = 1.0
# evolution path
self._p_sigma = np.zeros(n_dim)
# distribution parameter
self._mean = mean.copy()
self._sigma = sigma
self._B = np.eye(n_dim)
# bounds contains low and high of each parameter.
assert bounds is None or _is_valid_bounds(bounds, mean), "invalid bounds"
self._bounds = bounds
self._n_max_resampling = n_max_resampling
self._g = 0
self._rng = np.random.RandomState(seed)
# Termination criteria
self._tolx = 1e-12 * sigma
self._tolxup = 1e4
self._tolfun = 1e-12
self._tolconditioncov = 1e14
self._funhist_term = 10 + math.ceil(30 * n_dim / population_size)
self._funhist_values = np.empty(self._funhist_term * 2)
@property
def dim(self) -> int:
"""A number of dimensions"""
return self._n_dim
@property
def population_size(self) -> int:
"""A population size"""
return self._popsize
@property
def generation(self) -> int:
"""Generation number which is monotonically incremented
when multi-variate gaussian distribution is updated."""
return self._g
def _alpha_dist(self, num_feasible: int) -> float:
return (
self._h_inv
* min(1.0, math.sqrt(float(self._popsize) / self._n_dim))
* math.sqrt(float(num_feasible) / self._popsize)
)
def _w_dist_hat(self, z: np.ndarray, num_feasible: int) -> float:
return math.exp(self._alpha_dist(num_feasible) * np.linalg.norm(z))
def _eta_stag_sigma(self, num_feasible: int) -> float:
return math.tanh(
(0.024 * num_feasible + 0.7 * self._n_dim + 20.0) / (self._n_dim + 12.0)
)
def _eta_conv_sigma(self, num_feasible: int) -> float:
return 2.0 * math.tanh(
(0.025 * num_feasible + 0.75 * self._n_dim + 10.0) / (self._n_dim + 4.0)
)
def _eta_move_B(self, num_feasible: int) -> float:
return (
180
* self._n_dim
* math.tanh(0.02 * num_feasible)
/ (47 * (self._n_dim**2) + 6400)
)
def _eta_stag_B(self, num_feasible: int) -> float:
return (
168
* self._n_dim
* math.tanh(0.02 * num_feasible)
/ (47 * (self._n_dim**2) + 6400)
)
def _eta_conv_B(self, num_feasible: int) -> float:
return (
12
* self._n_dim
* math.tanh(0.02 * num_feasible)
/ (47 * (self._n_dim**2) + 6400)
)
def reseed_rng(self, seed: int) -> None:
self._rng.seed(seed)
def set_bounds(self, bounds: Optional[np.ndarray]) -> None:
"""Update boundary constraints"""
assert bounds is None or _is_valid_bounds(bounds, self._mean), "invalid bounds"
self._bounds = bounds
def ask(self) -> np.ndarray:
"""Sample a parameter"""
for i in range(self._n_max_resampling):
x = self._sample_solution()
if self._is_feasible(x):
return x
x = self._sample_solution()
x = self._repair_infeasible_params(x)
return x
def _sample_solution(self) -> np.ndarray:
# antithetic sampling
if self._zsym is None:
z = self._rng.randn(self._n_dim) # ~ N(0, I)
self._zsym = z
else:
z = -self._zsym
self._zsym = None
x = self._mean + self._sigma * self._B.dot(z) # ~ N(m, σ^2 B B^T)
return x
def _is_feasible(self, param: np.ndarray) -> bool:
if self._bounds is None:
return True
return cast(
bool,
np.all(param >= self._bounds[:, 0]) and np.all(param <= self._bounds[:, 1]),
) # Cast bool_ to bool.
def _repair_infeasible_params(self, param: np.ndarray) -> np.ndarray:
if self._bounds is None:
return param
# clip with lower and upper bound.
param = np.where(param < self._bounds[:, 0], self._bounds[:, 0], param)
param = np.where(param > self._bounds[:, 1], self._bounds[:, 1], param)
return param
def tell(self, solutions: list[tuple[np.ndarray, float]]) -> None:
"""Tell evaluation values"""
assert len(solutions) == self._popsize, "Must tell popsize-length solutions."
for s in solutions:
assert np.all(
np.abs(s[0]) < _MEAN_MAX
), f"Abs of all param values must be less than {_MEAN_MAX} to avoid overflow errors"
# counting # feasible solutions
lamb_feas = len([s[1] for s in solutions if s[1] < sys.maxsize])
self._g += 1
solutions.sort(key=lambda s: s[1])
# Stores 'best' and 'worst' values of the
# last 'self._funhist_term' generations.
funhist_idx = 2 * (self.generation % self._funhist_term)
self._funhist_values[funhist_idx] = solutions[0][1]
self._funhist_values[funhist_idx + 1] = solutions[-1][1]
z_k = np.array(
[
np.linalg.inv(self._sigma * self._B).dot(s[0] - self._mean)
for s in solutions
]
)
# Evolution path
z_w = np.sum(z_k.T * self._w_rank, axis=1)
self._p_sigma = (1 - self._c_sigma) * self._p_sigma + math.sqrt(
self._c_sigma * (2 - self._c_sigma) * self._mu_eff
) * z_w
norm_p_sigma = np.linalg.norm(self._p_sigma)
# switching learning rate depending on search situation
movement_phase = norm_p_sigma >= self._chi_n
# distance weight
w_dist_tmp = np.array(
[
self._w_rank_hat[i] * self._w_dist_hat(z_k[i, :], lamb_feas)
for i in range(self.population_size)
]
)
w_dist = w_dist_tmp / sum(w_dist_tmp) - 1.0 / self.population_size
# switching weights and learning rate
w = w_dist if movement_phase else self._w_rank
eta_sigma = (
self._eta_move_sigma
if norm_p_sigma >= self._chi_n
else (
self._eta_stag_sigma(lamb_feas)
if norm_p_sigma >= 0.1 * self._chi_n
else self._eta_conv_sigma(lamb_feas)
)
)
eta_B = (
self._eta_move_B(lamb_feas)
if norm_p_sigma >= self._chi_n
else (
self._eta_stag_B(lamb_feas)
if norm_p_sigma >= 0.1 * self._chi_n
else self._eta_conv_B(lamb_feas)
)
)
# natural gradient estimation in local coordinate
G_delta = np.sum(
[w[i] * z_k[i, :] for i in range(self.population_size)], axis=0
)
G_M = np.sum(
[
w[i] * (np.outer(z_k[i, :], z_k[i, :]) - np.eye(self._n_dim))
for i in range(self.population_size)
],
axis=0,
)
G_sigma = G_M.trace() / self._n_dim
G_B = G_M - G_sigma * np.eye(self._n_dim)
# parameter update
bBBT = self._B @ self._B.T
self._mean += self._eta_mean * self._sigma * np.dot(self._B, G_delta)
self._sigma *= math.exp((eta_sigma / 2.0) * G_sigma)
# self._B = self._B.dot(expm((eta_B / 2.0) * G_B))
self._B = self._B.dot(_expm((eta_B / 2.0) * G_B))
aBBT = self._B @ self._B.T
# emphasizing expansion
e, v = np.linalg.eigh(bBBT)
tau_vec = [
(v[:, i].reshape(self._n_dim, 1).T @ aBBT @ v[:, i].reshape(self._n_dim, 1))
/ (
v[:, i].reshape(self._n_dim, 1).T
@ bBBT
@ v[:, i].reshape(self._n_dim, 1)
)
- 1
for i in range(self._n_dim)
]
flg_tau = [1.0 if tau_vec[i] > 0 else 0.0 for i in range(self._n_dim)]
tau = max(tau_vec)
gamma = max(
(1.0 - self._c_gamma) * self._gamma
+ self._c_gamma * math.sqrt(1.0 + self._d_gamma * tau),
1.0,
)
if movement_phase:
Q = (gamma - 1.0) * np.sum(
[flg_tau[i] * np.outer(v[:, i], v[:, i]) for i in range(self._n_dim)],
axis=0,
) + np.eye(self._n_dim)
stepQ = math.pow(np.linalg.det(Q), 1.0 / self._n_dim)
self._sigma *= stepQ
self._B = Q @ self._B / stepQ
def should_stop(self) -> bool:
A = self._B.dot(self._B.T)
A = (A + A.T) / 2
E2, V = np.linalg.eigh(A)
E = np.sqrt(np.where(E2 < 0, _EPS, E2))
diagA = np.diag(A)
# Stop if the range of function values of the recent generation is below tolfun.
if (
self.generation > self._funhist_term
and np.max(self._funhist_values) - np.min(self._funhist_values)
< self._tolfun
):
return True
# Stop if detecting divergent behavior.
if self._sigma * np.max(E) > self._tolxup:
return True
# No effect coordinates: stop if adding 0.2-standard deviations
# in any single coordinate does not change m.
if np.any(self._mean == self._mean + (0.2 * self._sigma * np.sqrt(diagA))):
return True
# No effect axis: stop if adding 0.1-standard deviation vector in
# any principal axis direction of C does not change m. "pycma" check
# axis one by one at each generation.
i = self.generation % self.dim
if np.all(self._mean == self._mean + (0.1 * self._sigma * E[i] * V[:, i])):
return True
# Stop if the condition number of the covariance matrix exceeds 1e14.
condition_cov = np.max(E) / np.min(E)
if condition_cov > self._tolconditioncov:
return True
return False
def _is_valid_bounds(bounds: Optional[np.ndarray], mean: np.ndarray) -> bool:
if bounds is None:
return True
if (mean.size, 2) != bounds.shape:
return False
if not np.all(bounds[:, 0] <= mean):
return False
if not np.all(mean <= bounds[:, 1]):
return False
return True
def _get_h_inv(dim: int) -> float:
def f(a: float) -> float:
return ((1.0 + a * a) * math.exp(a * a / 2.0) / 0.24) - 10.0 - dim
def f_prime(a: float) -> float:
return (1.0 / 0.24) * a * math.exp(a * a / 2.0) * (3.0 + a * a)
h_inv = 6.0
while abs(f(h_inv)) > 1e-10:
last = h_inv
h_inv = h_inv - 0.5 * (f(h_inv) / f_prime(h_inv))
if abs(h_inv - last) < 1e-16:
# Exit early since no further improvements are happening
break
return h_inv
def _expm(mat: np.ndarray) -> np.ndarray:
D, U = np.linalg.eigh(mat)
expD = np.exp(D)
return U @ np.diag(expD) @ U.T
|