1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
|
import hypothesis.extra.numpy as npst
import unittest
from hypothesis import given, settings, strategies as st
from cmaes import CMA, SepCMA
class TestFuzzing(unittest.TestCase):
@settings(deadline=1800000)
@given(
data=st.data(),
)
def test_cma_tell(self, data):
dim = data.draw(st.integers(min_value=2, max_value=100))
mean = data.draw(npst.arrays(dtype=float, shape=dim))
sigma = data.draw(st.floats(min_value=1e-16))
n_iterations = data.draw(st.integers(min_value=1))
try:
optimizer = CMA(mean, sigma)
except AssertionError:
return
popsize = optimizer.population_size
for _ in range(n_iterations):
tell_solutions = data.draw(
st.lists(
st.tuples(npst.arrays(dtype=float, shape=dim), st.floats()),
min_size=popsize,
max_size=popsize,
)
)
optimizer.ask()
try:
optimizer.tell(tell_solutions)
except AssertionError:
return
optimizer.ask()
@settings(deadline=1800000)
@given(
data=st.data(),
)
def test_sepcma_tell(self, data):
dim = data.draw(st.integers(min_value=2, max_value=100))
mean = data.draw(npst.arrays(dtype=float, shape=dim))
sigma = data.draw(st.floats(min_value=1e-16))
n_iterations = data.draw(st.integers(min_value=1))
try:
optimizer = SepCMA(mean, sigma)
except AssertionError:
return
popsize = optimizer.population_size
for _ in range(n_iterations):
tell_solutions = data.draw(
st.lists(
st.tuples(npst.arrays(dtype=float, shape=dim), st.floats()),
min_size=popsize,
max_size=popsize,
)
)
optimizer.ask()
try:
optimizer.tell(tell_solutions)
except AssertionError:
return
optimizer.ask()
|