1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
|
"""Test functionalities of I/O in MATLAB (.mat) format."""
from pathlib import Path
from pickle import load
from typing import TYPE_CHECKING, Callable
import pytest
from cobra.io import load_matlab_model, read_sbml_model, save_matlab_model
try:
import scipy
except ImportError:
scipy = None
if TYPE_CHECKING:
from cobra import Model
@pytest.fixture(scope="function")
def raven_model(data_directory: Path) -> "Model":
"""Fixture for RAVEN model."""
with open(data_directory / "raven.pickle", "rb") as infile:
return load(infile)
@pytest.mark.skipif(scipy is None, reason="scipy unavailable")
@pytest.mark.parametrize(
"fix_ref_model, fix_directory, filename",
[
("mini_model", "cobra_data_directory", "mini.mat"),
("raven_model", "data_directory", "raven.mat"),
],
)
def test_load_matlab_model(
compare_models: Callable,
fix_ref_model: str,
fix_directory: str,
filename: str,
request: pytest.FixtureRequest,
) -> None:
"""Test the reading of MAT model.
Will check Path and str for each model.
Parameters
----------
compare_models : Callable
A callable function to compare models.
fix_ref_model: str
Name of reference model fixture which will be requested.
fix_directory: str
Name of directory fixture which will be requested.
filename: str
Filename to use as a parameter
request: FixtureRequest
Will be used to request fixtures.
"""
current_model = load_matlab_model(
(request.getfixturevalue(fix_directory) / filename).resolve()
)
assert compare_models(request.getfixturevalue(fix_ref_model), current_model) is None
current_model = load_matlab_model(
str((request.getfixturevalue(fix_directory) / filename).resolve())
)
assert compare_models(request.getfixturevalue(fix_ref_model), current_model) is None
with request.getfixturevalue(fix_directory).joinpath(filename).open("rb") as file_h:
current_model = load_matlab_model(file_h)
assert (
compare_models(request.getfixturevalue(fix_ref_model), current_model)
is None
)
# @pytest.mark.xfail(reason="localPath not supported yet")
@pytest.mark.skipif(scipy is None, reason="scipy unavailable")
@pytest.mark.parametrize(
"fix_ref_model, filename",
[("mini_model", "mini.mat"), ("raven_model", "raven.mat")],
)
def test_save_matlab_model(tmp_path: Path, fix_ref_model, filename, request) -> None:
"""Test the writing of MAT model.
Parameters
----------
tmp_path : pathlib.Path
The path to the temporary test assets store.
fix_ref_model: str
Name of reference model fixture which will be requested.
filename: str
Filename to use as a parameter
request: FixtureRequest
Will be used to request fixtures.
"""
output_file = tmp_path / filename
save_matlab_model(
request.getfixturevalue(fix_ref_model), str(output_file.resolve())
)
assert output_file.exists()
output_file.unlink()
save_matlab_model(request.getfixturevalue(fix_ref_model), output_file.resolve())
assert output_file.exists()
output_file.unlink()
with output_file.open("wb") as file_h:
save_matlab_model(request.getfixturevalue(fix_ref_model), file_h)
assert output_file.exists()
@pytest.mark.skipif(scipy is None, reason="scipy unavailable")
def test_large_bounds(tmp_path: Path, model: "Model") -> None:
"""Verify that mat bounds don't get broken by the config defaults.
Parameters
----------
tmp_path : pathlib.Path
The path to the temporary test assets store.
model : cobra.Model
The "textbook" model.
"""
model.reactions[0].bounds = -1e6, 1e6
filepath = tmp_path / "model.mat"
save_matlab_model(model, filepath.resolve())
read = load_matlab_model(filepath.resolve())
assert read.reactions[0].bounds == (-1e6, 1e6)
@pytest.mark.skipif(scipy is None, reason="scipy unavailable")
@pytest.mark.parametrize(
"fix_directory, filename",
[("cobra_data_directory", "mini.mat"), ("data_directory", "raven.mat")],
)
def test_read_rewrite_matlab_model(
compare_models: Callable,
tmp_path: Path,
fix_directory: str,
filename: str,
request: pytest.FixtureRequest,
) -> None:
"""Verify that rewritten matlab model is identical to original.
Parameters
----------
compare_models : Callable
A callable to compare models.
tmp_path : pathlib.Path
The path to the temporary test assets store.
fix_directory: str
Name of directory fixture which will be requested.
filename: str
Filename to use as a parameter
request: FixtureRequest
Will be used to request fixtures.
"""
current_model = load_matlab_model(request.getfixturevalue(fix_directory) / filename)
output_file = tmp_path.joinpath(filename)
save_matlab_model(current_model, output_file)
mat_model_reload = load_matlab_model(output_file)
assert compare_models(current_model, mat_model_reload) is None
@pytest.mark.skipif(scipy is None, reason="scipy unavailable")
@pytest.mark.parametrize(
"dirname, xml_file",
[
("data_directory", "e_coli_core.xml"),
("cobra_data_directory", "salmonella.xml.gz"),
("cobra_data_directory", "mini_cobra.xml"),
("data_directory", "mini_fbc2.xml"),
],
)
# When using a better comparison function, can run test on
# "annotation.xml", "example_notes.xml", "fbc_ex1.xml", "fbc_ex2.xml", "validation.xml"
# "valid_annotation_output.xml" has reaction annotations in a metabolite, so they would
# be thrown out by matlab
def test_compare_xml_to_written_matlab_model(
compare_models: Callable,
tmp_path: Path,
dirname: str,
xml_file: str,
request: pytest.FixtureRequest,
) -> None:
"""Verify that xml rewritten as mat file is written and read correctly.
Parameters
----------
compare_models : Callable
A callable to compare models.
tmp_path : pathlib.Path
The path to the temporary test assets store.
xml_file : str
The name of the XML file to compare against.
"""
xml_model = read_sbml_model(request.getfixturevalue(dirname) / xml_file)
mat_output_file = tmp_path / xml_file.replace(".xml", ".mat")
save_matlab_model(xml_model, mat_output_file)
mat_model = load_matlab_model(mat_output_file)
assert compare_models(xml_model, mat_model) is None
@pytest.mark.skipif(scipy is None, reason="scipy unavailable")
def test_fail_on_problematic_compartments(data_directory: Path) -> None:
"""Test that mat import will fail if there are problems in compartments.
Parameters
----------
data_directory : pathlib.Path
The path to the test data directory.
"""
with pytest.raises(IOError):
# AntCore does not have defined compartments
load_matlab_model(data_directory / "AntCore.mat")
with pytest.raises(IOError):
# Ec_iAF1260_flux1 has underscore in compartment names which is not allowed
load_matlab_model(data_directory / "Ec_iAF1260_flux1.mat")
@pytest.mark.skipif(scipy is None, reason="scipy unavailable")
def test_mat_model_with_long_compartment_ids(
compare_models: Callable, data_directory: Path, tmp_path: Path
) -> None:
"""Test that long compartment IDs like "luSI" are correctly loaded.
Parameters
----------
compare_models : Callable
A callable to compare models.
data_directory : pathlib.Path
The path to the test data directory.
tmp_path : pathlib.Path
The path to the temporary test assets store.
"""
model_compartments = load_matlab_model(data_directory / "compartments.mat")
assert model_compartments.compartments == {
"csf": "csf",
"bcK": "bcK",
"a": "a",
"luSI": "luSI",
"luLI": "luLI",
"luP": "luP",
"aL": "aL",
"fe": "fe",
}
assert len(model_compartments.metabolites) == 8
assert len(model_compartments.reactions) == 15
for met in model_compartments.metabolites:
assert met.annotation == {
"bigg.metabolite": ["glc__D"],
"cas": ["50-99-7"],
"kegg.compound": ["C00031"],
"pubchem.substance": ["3333"],
}
output_file = tmp_path / "compartments.mat"
save_matlab_model(model_compartments, output_file.resolve())
model_compartments_reloaded = load_matlab_model(output_file.resolve())
assert compare_models(model_compartments, model_compartments_reloaded) is None
@pytest.mark.skipif(scipy is None, reason="scipy unavailable")
def test_mat_model_with_no_genes(
compare_models: Callable, data_directory: Path, tmp_path: Path
) -> None:
"""Test that a model with no genes is loaded and reloaded correctly.
Parameters
----------
compare_models : Callable
A callable to compare models.
data_directory : pathlib.Path
The path to the test data directory.
tmp_path : pathlib.Path
The path to the temporary test assets store.
"""
model_no_genes = load_matlab_model(
data_directory / "cardiac_mit_glcuptake_atpmax.mat"
)
assert not len(model_no_genes.genes)
output_file = tmp_path / "cardiac_mit_glcuptake_atpmax.mat"
save_matlab_model(model_no_genes, output_file.resolve())
model_no_genes_reloaded = load_matlab_model(output_file.resolve())
assert compare_models(model_no_genes, model_no_genes_reloaded) is None
@pytest.mark.skipif(scipy is None, reason="scipy unavailable")
def test_mat_model_wrong_caps(
compare_models: Callable, data_directory: Path, cobra_data_directory: Path
) -> None:
"""Check that wrong capitalization in matlab field names is processed correctly.
See https://gist.github.com/akaviaLab/3dcb0eed6563a9d3d1e07198337300ac to create it
again when needed.
Parameters
----------
compare_models : Callable
A callable to compare models.
data_directory : pathlib.Path
The path to the test data directory.
"""
mat_model = load_matlab_model((cobra_data_directory / "mini.mat").resolve())
mat_wrong_caps_model = load_matlab_model(
(data_directory / "mini_wrong_key_caps.mat").resolve()
)
assert compare_models(mat_model, mat_wrong_caps_model) is None
assert mat_wrong_caps_model.reactions.get_by_id("LDH_D").annotation == {
"rhea": ["16369", "16370", "16371", "16372"],
"metanetx.reaction": ["MNXR101037"],
"kegg.reaction": ["R00704"],
"bigg.reaction": ["LDH_D"],
"ec-code": ["1.1.1.28"],
"biocyc": ["META:DLACTDEHYDROGNAD-RXN"],
"sbo": ["SBO:0000375"],
}
for rxn in mat_model.reactions.list_attr("id"):
assert (
mat_wrong_caps_model.reactions.get_by_id(rxn).annotation
== mat_model.reactions.get_by_id(rxn).annotation
)
assert mat_wrong_caps_model.metabolites.get_by_id("pyr_c").annotation == {
"seed.compound": ["cpd00020"],
"unipathway.compound": ["UPC00022"],
"lipidmaps": ["LMFA01060077"],
"reactome": ["REACT_113557", "REACT_389680", "REACT_29398"],
"biocyc": ["PYRUVATE"],
"chebi": [
"CHEBI:15361",
"CHEBI:14987",
"CHEBI:8685",
"CHEBI:32816",
"CHEBI:45253",
"CHEBI:26466",
"CHEBI:26462",
],
"pubchem.substance": ["3324"],
"bigg.metabolite": ["pyr"],
"cas": ["127-17-3"],
"hmdb": ["HMDB00243"],
"kegg.compound": ["C00022"],
}
for met in mat_model.metabolites.list_attr("id"):
assert (
mat_wrong_caps_model.metabolites.get_by_id(met).annotation
== mat_model.metabolites.get_by_id(met).annotation
)
|