1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
|
"""Test functionalities of reaction and gene deletions."""
import math
import os
from typing import Callable, List
import numpy as np
import pandas as pd
import pytest
from cobra import Model, Solution
from cobra.flux_analysis.deletion import (
double_gene_deletion,
double_reaction_deletion,
single_gene_deletion,
single_reaction_deletion,
)
from cobra.flux_analysis.room import add_room
# Single gene deletion FBA
def test_single_gene_deletion_fba_benchmark(
model: Model, benchmark: Callable, all_solvers: List[str]
) -> None:
"""Benchmark single gene deletion using FBA."""
model.solver = all_solvers
benchmark(single_gene_deletion, model, model.genes[1::10])
def test_single_gene_deletion_fba(model: Model, all_solvers: List[str]) -> None:
"""Test single gene deletion using FBA."""
# expected knockouts for textbook model
model.solver = all_solvers
growth_dict = {
"b0008": 0.87,
"b0114": 0.80,
"b0116": 0.78,
"b2276": 0.21,
"b1779": 0.00,
}
result = single_gene_deletion(
model=model, gene_list=list(growth_dict), method="fba", processes=1
)
for gene, value in growth_dict.items():
assert np.isclose(result.knockout[gene].growth, value, atol=1e-02)
# Singe gene deletion MOMA
def test_single_gene_deletion_moma_benchmark(
model: Model, benchmark: Callable, qp_solvers: List[str]
) -> None:
"""Benchmark single gene deletion using MOMA."""
model.solver = qp_solvers
genes = ["b0008", "b0114", "b2276", "b1779"]
benchmark(
single_gene_deletion,
model=model,
gene_list=genes,
method="moma",
processes=1,
)
def test_single_gene_deletion_moma(model: Model, qp_solvers: List[str]) -> None:
"""Test single gene deletion using MOMA."""
model.solver = qp_solvers
# expected knockouts for textbook model
growth_dict = {
"b0008": 0.87,
"b0114": 0.71,
"b0116": 0.56,
"b2276": 0.11,
"b1779": 0.00,
}
result = single_gene_deletion(
model=model, gene_list=list(growth_dict), method="moma", processes=1
)
for gene, value in growth_dict.items():
assert np.isclose(result.knockout[gene].growth, value, atol=1e-02)
def test_single_gene_deletion_moma_reference(
model: Model, qp_solvers: List[str]
) -> None:
"""Test single gene deletion using MOMA (reference solution)."""
model.solver = qp_solvers
# expected knockouts for textbook model
growth_dict = {
"b0008": 0.87,
"b0114": 0.71,
"b0116": 0.56,
"b2276": 0.11,
"b1779": 0.00,
}
sol = model.optimize()
result = single_gene_deletion(
model=model,
gene_list=list(growth_dict),
method="moma",
solution=sol,
processes=1,
)
for gene, value in growth_dict.items():
assert np.isclose(result.knockout[gene].growth, value, atol=1e-02)
# Single gene deletion linear MOMA
def test_single_gene_deletion_linear_moma_benchmark(
model: Model, benchmark: Callable, all_solvers: List[str]
) -> None:
"""Benchmark single gene deletion using linear MOMA."""
model.solver = all_solvers
genes = ["b0008", "b0114", "b2276", "b1779"]
benchmark(
single_gene_deletion,
model=model,
gene_list=genes,
method="linear moma",
processes=1,
)
def test_single_gene_deletion_linear_moma(model: Model, all_solvers: List[str]) -> None:
"""Test single gene deletion using linear MOMA (reference solution)."""
model.solver = all_solvers
# expected knockouts for textbook model
growth_dict = {
"b0008": 0.87,
"b0114": 0.76,
"b0116": 0.65,
"b2276": 0.08,
"b1779": 0.00,
}
sol = model.optimize()
result = single_gene_deletion(
model=model,
gene_list=list(growth_dict),
method="linear moma",
solution=sol,
processes=1,
)
for gene, value in growth_dict.items():
assert np.isclose(result.knockout[gene].growth, value, atol=1e-02)
# Single gene deletion ROOM
def test_single_gene_deletion_room_benchmark(
model: Model, benchmark: Callable, all_solvers: List[str]
) -> None:
"""Benchmark single gene deletion using ROOM."""
if all_solvers == "glpk":
pytest.skip("GLPK is too slow to run ROOM.")
model.solver = all_solvers
genes = ["b0008", "b0114", "b2276", "b1779"]
benchmark(
single_gene_deletion,
model=model,
gene_list=genes,
method="room",
processes=1,
)
# Single gene deletion linear ROOM
def test_single_gene_deletion_linear_room_benchmark(
model: Model, benchmark: Callable, all_solvers: List[str]
) -> None:
"""Benchmark single gene deletion using linear ROOM."""
model.solver = all_solvers
genes = ["b0008", "b0114", "b2276", "b1779"]
benchmark(
single_gene_deletion,
model=model,
gene_list=genes,
method="linear room",
processes=1,
)
# Single reaction deletion
def test_single_reaction_deletion_benchmark(
model: Model, benchmark: Callable, all_solvers: List[str]
) -> None:
"""Benchmark single reaction deletion."""
model.solver = all_solvers
benchmark(
single_reaction_deletion, model=model, genes=model.genes[1::10], processes=1
)
def test_single_reaction_deletion(model: Model, all_solvers) -> None:
"""Test single reaction deletion."""
model.solver = all_solvers
expected_results = {
"FBA": 0.70404,
"FBP": 0.87392,
"CS": 0,
"FUM": 0.81430,
"GAPD": 0,
"GLUDy": 0.85139,
}
result = single_reaction_deletion(
model=model, reaction_list=list(expected_results), processes=1
)
for reaction, value in expected_results.items():
assert np.isclose(result.knockout[reaction].growth, value, atol=1e-05)
# Single reaction deletion ROOM
def test_single_reaction_deletion_room(
room_model: Model, room_solution: Solution, all_solvers: List[str]
) -> None:
"""Test single reaction deletion using ROOM."""
room_model.solver = all_solvers
expected = pd.Series(
{
"v1": 10.0,
"v2": 5.0,
"v3": 0.0,
"v4": 5.0,
"v5": 5.0,
"v6": 0.0,
"b1": 10.0,
"b2": 5.0,
"b3": 5.0,
},
index=["v1", "v2", "v3", "v4", "v5", "v6", "b1", "b2", "b3"],
)
with room_model:
room_model.reactions.v6.knock_out()
add_room(room_model, solution=room_solution, delta=0.0, epsilon=0.0)
room_sol = room_model.optimize()
assert np.allclose(room_sol.fluxes, expected)
# Single reaction deletion linear ROOM
def test_single_reaction_deletion_linear_room(
room_model: Model, room_solution: Solution, all_solvers: List[str]
) -> None:
"""Test single reaction deletion using linear ROOM."""
room_model.solver = all_solvers
expected = pd.Series(
{
"v1": 10.0,
"v2": 5.0,
"v3": 0.0,
"v4": 5.0,
"v5": 5.0,
"v6": 0.0,
"b1": 10.0,
"b2": 5.0,
"b3": 5.0,
},
index=["v1", "v2", "v3", "v4", "v5", "v6", "b1", "b2", "b3"],
)
with room_model:
room_model.reactions.v6.knock_out()
add_room(
room_model,
solution=room_solution,
delta=0.0,
epsilon=0.0,
linear=True,
)
linear_room_sol = room_model.optimize()
assert np.allclose(linear_room_sol.fluxes, expected)
# Double gene deletion
def test_double_gene_deletion_benchmark(
large_model: Model, benchmark: Callable
) -> None:
"""Benchmark double gene deletion."""
genes = [
"b0726",
"b4025",
"b0724",
"b0720",
"b2935",
"b2935",
"b1276",
"b1241",
]
benchmark(double_gene_deletion, large_model, gene_list1=genes, processes=1)
@pytest.mark.skipif("SKIP_MP" in os.environ, reason="unsafe for parallel execution")
def test_double_gene_deletion(model: Model) -> None:
"""Test double gene deletion."""
genes = [
"b0726",
"b4025",
"b0724",
"b0720",
"b2935",
"b2935",
"b1276",
"b1241",
]
growth_dict = {
"b0720": {
"b0720": 0.0,
"b0724": 0.0,
"b0726": 0.0,
"b1241": 0.0,
"b1276": 0.0,
"b2935": 0.0,
"b4025": 0.0,
},
"b0724": {
"b0720": 0.0,
"b0724": 0.814,
"b0726": 0.814,
"b1241": 0.814,
"b1276": 0.814,
"b2935": 0.814,
"b4025": 0.739,
},
"b0726": {
"b0720": 0.0,
"b0724": 0.814,
"b0726": 0.858,
"b1241": 0.858,
"b1276": 0.858,
"b2935": 0.858,
"b4025": 0.857,
},
"b1241": {
"b0720": 0.0,
"b0724": 0.814,
"b0726": 0.858,
"b1241": 0.874,
"b1276": 0.874,
"b2935": 0.874,
"b4025": 0.863,
},
"b1276": {
"b0720": 0.0,
"b0724": 0.814,
"b0726": 0.858,
"b1241": 0.874,
"b1276": 0.874,
"b2935": 0.874,
"b4025": 0.863,
},
"b2935": {
"b0720": 0.0,
"b0724": 0.814,
"b0726": 0.858,
"b1241": 0.874,
"b1276": 0.874,
"b2935": 0.874,
"b4025": 0.863,
},
"b4025": {
"b0720": 0.0,
"b0724": 0.739,
"b0726": 0.857,
"b1241": 0.863,
"b1276": 0.863,
"b2935": 0.863,
"b4025": 0.863,
},
}
solution = double_gene_deletion(model, gene_list1=genes, processes=3)
solution_one_process = double_gene_deletion(model, gene_list1=genes, processes=1)
for rxn_a, sub in growth_dict.items():
for rxn_b, growth in sub.items():
sol = solution.knockout[{rxn_a, rxn_b}]
sol_one = solution_one_process.knockout[{rxn_a, rxn_b}]
assert np.isclose(sol.growth, growth, atol=1e-3)
assert np.isclose(sol_one.growth, growth, atol=1e-3)
def test_double_gene_knockout_bug(large_model: Model) -> None:
"""Test that the bug reported in #1102 is fixed."""
genes = ["b0118", "b1276"]
expected = (
pd.DataFrame(
data={
"ids": [
{"b0118"},
{"b1276"},
{"b1276", "b0118"},
],
"growth": [0.98, 0.98, 0.0],
"status": ["optimal"] * 3,
}
)
.sort_values("ids")
.reset_index()
)
result = (
double_gene_deletion(large_model, genes, processes=1)
.sort_values("ids")
.reset_index()
)
assert result["growth"].values == pytest.approx(expected["growth"].values, abs=0.01)
assert (result["status"] == expected["status"]).all()
# Double reaction deletion
def test_double_reaction_deletion_benchmark(
large_model: Model, benchmark: Callable
) -> None:
"""Benchmark double reaction deletion."""
reactions = large_model.reactions[100:105]
benchmark(double_reaction_deletion, large_model, reaction_list1=reactions)
@pytest.mark.skipif("SKIP_MP" in os.environ, reason="unsafe for parallel execution")
def test_double_reaction_deletion(model: Model) -> None:
"""Test double reaction deletion."""
reactions = ["FBA", "ATPS4r", "ENO", "FRUpts2"]
growth_dict = {
"FBA": {"ATPS4r": 0.135, "ENO": float("nan"), "FRUpts2": 0.704},
"ATPS4r": {"ENO": float("nan"), "FRUpts2": 0.374},
"ENO": {"FRUpts2": 0.0},
}
solution = double_reaction_deletion(model, reaction_list1=reactions, processes=3)
solution_one_process = double_reaction_deletion(
model, reaction_list1=reactions, processes=1
)
for rxn_a, sub in growth_dict.items():
for rxn_b, growth in sub.items():
sol = solution.knockout[{rxn_a, rxn_b}]
sol_one = solution_one_process.knockout[{rxn_a, rxn_b}]
if math.isnan(growth):
assert math.isnan(sol.growth)
assert math.isnan(sol_one.growth)
else:
assert np.isclose(sol.growth, growth, atol=1e-3)
assert np.isclose(sol_one.growth, growth, atol=1e-3)
def test_deletion_accessor(small_model: Model) -> None:
"""Test the DataFrame accessor."""
single = single_reaction_deletion(small_model, small_model.reactions[0:10])
double = double_reaction_deletion(small_model, small_model.reactions[0:10])
rxn1 = small_model.reactions[0]
rxn2 = small_model.reactions[1]
with pytest.raises(ValueError):
single.knockout[1]
with pytest.raises(ValueError):
single.knockout[{"a": 1}]
assert single.knockout[rxn1].ids.iloc[0] == {rxn1.id}
assert double.knockout[{rxn1, rxn2}].ids.iloc[0] == {rxn1.id, rxn2.id}
assert all(single.knockout[rxn1.id] == single.knockout[rxn1])
assert all(double.knockout[{rxn1.id, rxn2.id}] == double.knockout[{rxn1, rxn2}])
assert single.knockout[rxn1, rxn2].shape == (2, 3)
assert double.knockout[rxn1, rxn2].shape == (2, 3)
assert double.knockout[{rxn1, rxn2}].shape == (1, 3)
assert double.knockout[{rxn1}, {rxn2}].shape == (2, 3)
|