File: test_deletion.py

package info (click to toggle)
python-cobra 0.29.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 11,512 kB
  • sloc: python: 14,703; xml: 12,841; makefile: 137; sh: 32
file content (464 lines) | stat: -rw-r--r-- 13,722 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
"""Test functionalities of reaction and gene deletions."""

import math
import os
from typing import Callable, List

import numpy as np
import pandas as pd
import pytest

from cobra import Model, Solution
from cobra.flux_analysis.deletion import (
    double_gene_deletion,
    double_reaction_deletion,
    single_gene_deletion,
    single_reaction_deletion,
)
from cobra.flux_analysis.room import add_room


# Single gene deletion FBA
def test_single_gene_deletion_fba_benchmark(
    model: Model, benchmark: Callable, all_solvers: List[str]
) -> None:
    """Benchmark single gene deletion using FBA."""
    model.solver = all_solvers
    benchmark(single_gene_deletion, model, model.genes[1::10])


def test_single_gene_deletion_fba(model: Model, all_solvers: List[str]) -> None:
    """Test single gene deletion using FBA."""
    # expected knockouts for textbook model
    model.solver = all_solvers
    growth_dict = {
        "b0008": 0.87,
        "b0114": 0.80,
        "b0116": 0.78,
        "b2276": 0.21,
        "b1779": 0.00,
    }
    result = single_gene_deletion(
        model=model, gene_list=list(growth_dict), method="fba", processes=1
    )
    for gene, value in growth_dict.items():
        assert np.isclose(result.knockout[gene].growth, value, atol=1e-02)


# Singe gene deletion MOMA
def test_single_gene_deletion_moma_benchmark(
    model: Model, benchmark: Callable, qp_solvers: List[str]
) -> None:
    """Benchmark single gene deletion using MOMA."""
    model.solver = qp_solvers
    genes = ["b0008", "b0114", "b2276", "b1779"]
    benchmark(
        single_gene_deletion,
        model=model,
        gene_list=genes,
        method="moma",
        processes=1,
    )


def test_single_gene_deletion_moma(model: Model, qp_solvers: List[str]) -> None:
    """Test single gene deletion using MOMA."""
    model.solver = qp_solvers
    # expected knockouts for textbook model
    growth_dict = {
        "b0008": 0.87,
        "b0114": 0.71,
        "b0116": 0.56,
        "b2276": 0.11,
        "b1779": 0.00,
    }

    result = single_gene_deletion(
        model=model, gene_list=list(growth_dict), method="moma", processes=1
    )
    for gene, value in growth_dict.items():
        assert np.isclose(result.knockout[gene].growth, value, atol=1e-02)


def test_single_gene_deletion_moma_reference(
    model: Model, qp_solvers: List[str]
) -> None:
    """Test single gene deletion using MOMA (reference solution)."""
    model.solver = qp_solvers
    # expected knockouts for textbook model
    growth_dict = {
        "b0008": 0.87,
        "b0114": 0.71,
        "b0116": 0.56,
        "b2276": 0.11,
        "b1779": 0.00,
    }

    sol = model.optimize()
    result = single_gene_deletion(
        model=model,
        gene_list=list(growth_dict),
        method="moma",
        solution=sol,
        processes=1,
    )
    for gene, value in growth_dict.items():
        assert np.isclose(result.knockout[gene].growth, value, atol=1e-02)


# Single gene deletion linear MOMA
def test_single_gene_deletion_linear_moma_benchmark(
    model: Model, benchmark: Callable, all_solvers: List[str]
) -> None:
    """Benchmark single gene deletion using linear MOMA."""
    model.solver = all_solvers
    genes = ["b0008", "b0114", "b2276", "b1779"]
    benchmark(
        single_gene_deletion,
        model=model,
        gene_list=genes,
        method="linear moma",
        processes=1,
    )


def test_single_gene_deletion_linear_moma(model: Model, all_solvers: List[str]) -> None:
    """Test single gene deletion using linear MOMA (reference solution)."""
    model.solver = all_solvers
    # expected knockouts for textbook model
    growth_dict = {
        "b0008": 0.87,
        "b0114": 0.76,
        "b0116": 0.65,
        "b2276": 0.08,
        "b1779": 0.00,
    }

    sol = model.optimize()
    result = single_gene_deletion(
        model=model,
        gene_list=list(growth_dict),
        method="linear moma",
        solution=sol,
        processes=1,
    )
    for gene, value in growth_dict.items():
        assert np.isclose(result.knockout[gene].growth, value, atol=1e-02)


# Single gene deletion ROOM
def test_single_gene_deletion_room_benchmark(
    model: Model, benchmark: Callable, all_solvers: List[str]
) -> None:
    """Benchmark single gene deletion using ROOM."""
    if all_solvers == "glpk":
        pytest.skip("GLPK is too slow to run ROOM.")
    model.solver = all_solvers
    genes = ["b0008", "b0114", "b2276", "b1779"]
    benchmark(
        single_gene_deletion,
        model=model,
        gene_list=genes,
        method="room",
        processes=1,
    )


# Single gene deletion linear ROOM
def test_single_gene_deletion_linear_room_benchmark(
    model: Model, benchmark: Callable, all_solvers: List[str]
) -> None:
    """Benchmark single gene deletion using linear ROOM."""
    model.solver = all_solvers
    genes = ["b0008", "b0114", "b2276", "b1779"]
    benchmark(
        single_gene_deletion,
        model=model,
        gene_list=genes,
        method="linear room",
        processes=1,
    )


# Single reaction deletion
def test_single_reaction_deletion_benchmark(
    model: Model, benchmark: Callable, all_solvers: List[str]
) -> None:
    """Benchmark single reaction deletion."""
    model.solver = all_solvers
    benchmark(
        single_reaction_deletion, model=model, genes=model.genes[1::10], processes=1
    )


def test_single_reaction_deletion(model: Model, all_solvers) -> None:
    """Test single reaction deletion."""
    model.solver = all_solvers
    expected_results = {
        "FBA": 0.70404,
        "FBP": 0.87392,
        "CS": 0,
        "FUM": 0.81430,
        "GAPD": 0,
        "GLUDy": 0.85139,
    }
    result = single_reaction_deletion(
        model=model, reaction_list=list(expected_results), processes=1
    )

    for reaction, value in expected_results.items():
        assert np.isclose(result.knockout[reaction].growth, value, atol=1e-05)


# Single reaction deletion ROOM
def test_single_reaction_deletion_room(
    room_model: Model, room_solution: Solution, all_solvers: List[str]
) -> None:
    """Test single reaction deletion using ROOM."""
    room_model.solver = all_solvers
    expected = pd.Series(
        {
            "v1": 10.0,
            "v2": 5.0,
            "v3": 0.0,
            "v4": 5.0,
            "v5": 5.0,
            "v6": 0.0,
            "b1": 10.0,
            "b2": 5.0,
            "b3": 5.0,
        },
        index=["v1", "v2", "v3", "v4", "v5", "v6", "b1", "b2", "b3"],
    )
    with room_model:
        room_model.reactions.v6.knock_out()
        add_room(room_model, solution=room_solution, delta=0.0, epsilon=0.0)
        room_sol = room_model.optimize()

    assert np.allclose(room_sol.fluxes, expected)


# Single reaction deletion linear ROOM
def test_single_reaction_deletion_linear_room(
    room_model: Model, room_solution: Solution, all_solvers: List[str]
) -> None:
    """Test single reaction deletion using linear ROOM."""
    room_model.solver = all_solvers
    expected = pd.Series(
        {
            "v1": 10.0,
            "v2": 5.0,
            "v3": 0.0,
            "v4": 5.0,
            "v5": 5.0,
            "v6": 0.0,
            "b1": 10.0,
            "b2": 5.0,
            "b3": 5.0,
        },
        index=["v1", "v2", "v3", "v4", "v5", "v6", "b1", "b2", "b3"],
    )
    with room_model:
        room_model.reactions.v6.knock_out()
        add_room(
            room_model,
            solution=room_solution,
            delta=0.0,
            epsilon=0.0,
            linear=True,
        )
        linear_room_sol = room_model.optimize()

    assert np.allclose(linear_room_sol.fluxes, expected)


# Double gene deletion
def test_double_gene_deletion_benchmark(
    large_model: Model, benchmark: Callable
) -> None:
    """Benchmark double gene deletion."""
    genes = [
        "b0726",
        "b4025",
        "b0724",
        "b0720",
        "b2935",
        "b2935",
        "b1276",
        "b1241",
    ]
    benchmark(double_gene_deletion, large_model, gene_list1=genes, processes=1)


@pytest.mark.skipif("SKIP_MP" in os.environ, reason="unsafe for parallel execution")
def test_double_gene_deletion(model: Model) -> None:
    """Test double gene deletion."""
    genes = [
        "b0726",
        "b4025",
        "b0724",
        "b0720",
        "b2935",
        "b2935",
        "b1276",
        "b1241",
    ]
    growth_dict = {
        "b0720": {
            "b0720": 0.0,
            "b0724": 0.0,
            "b0726": 0.0,
            "b1241": 0.0,
            "b1276": 0.0,
            "b2935": 0.0,
            "b4025": 0.0,
        },
        "b0724": {
            "b0720": 0.0,
            "b0724": 0.814,
            "b0726": 0.814,
            "b1241": 0.814,
            "b1276": 0.814,
            "b2935": 0.814,
            "b4025": 0.739,
        },
        "b0726": {
            "b0720": 0.0,
            "b0724": 0.814,
            "b0726": 0.858,
            "b1241": 0.858,
            "b1276": 0.858,
            "b2935": 0.858,
            "b4025": 0.857,
        },
        "b1241": {
            "b0720": 0.0,
            "b0724": 0.814,
            "b0726": 0.858,
            "b1241": 0.874,
            "b1276": 0.874,
            "b2935": 0.874,
            "b4025": 0.863,
        },
        "b1276": {
            "b0720": 0.0,
            "b0724": 0.814,
            "b0726": 0.858,
            "b1241": 0.874,
            "b1276": 0.874,
            "b2935": 0.874,
            "b4025": 0.863,
        },
        "b2935": {
            "b0720": 0.0,
            "b0724": 0.814,
            "b0726": 0.858,
            "b1241": 0.874,
            "b1276": 0.874,
            "b2935": 0.874,
            "b4025": 0.863,
        },
        "b4025": {
            "b0720": 0.0,
            "b0724": 0.739,
            "b0726": 0.857,
            "b1241": 0.863,
            "b1276": 0.863,
            "b2935": 0.863,
            "b4025": 0.863,
        },
    }
    solution = double_gene_deletion(model, gene_list1=genes, processes=3)
    solution_one_process = double_gene_deletion(model, gene_list1=genes, processes=1)

    for rxn_a, sub in growth_dict.items():
        for rxn_b, growth in sub.items():
            sol = solution.knockout[{rxn_a, rxn_b}]
            sol_one = solution_one_process.knockout[{rxn_a, rxn_b}]
            assert np.isclose(sol.growth, growth, atol=1e-3)
            assert np.isclose(sol_one.growth, growth, atol=1e-3)


def test_double_gene_knockout_bug(large_model: Model) -> None:
    """Test that the bug reported in #1102 is fixed."""
    genes = ["b0118", "b1276"]
    expected = (
        pd.DataFrame(
            data={
                "ids": [
                    {"b0118"},
                    {"b1276"},
                    {"b1276", "b0118"},
                ],
                "growth": [0.98, 0.98, 0.0],
                "status": ["optimal"] * 3,
            }
        )
        .sort_values("ids")
        .reset_index()
    )
    result = (
        double_gene_deletion(large_model, genes, processes=1)
        .sort_values("ids")
        .reset_index()
    )
    assert result["growth"].values == pytest.approx(expected["growth"].values, abs=0.01)
    assert (result["status"] == expected["status"]).all()


# Double reaction deletion
def test_double_reaction_deletion_benchmark(
    large_model: Model, benchmark: Callable
) -> None:
    """Benchmark double reaction deletion."""
    reactions = large_model.reactions[100:105]
    benchmark(double_reaction_deletion, large_model, reaction_list1=reactions)


@pytest.mark.skipif("SKIP_MP" in os.environ, reason="unsafe for parallel execution")
def test_double_reaction_deletion(model: Model) -> None:
    """Test double reaction deletion."""
    reactions = ["FBA", "ATPS4r", "ENO", "FRUpts2"]
    growth_dict = {
        "FBA": {"ATPS4r": 0.135, "ENO": float("nan"), "FRUpts2": 0.704},
        "ATPS4r": {"ENO": float("nan"), "FRUpts2": 0.374},
        "ENO": {"FRUpts2": 0.0},
    }

    solution = double_reaction_deletion(model, reaction_list1=reactions, processes=3)
    solution_one_process = double_reaction_deletion(
        model, reaction_list1=reactions, processes=1
    )
    for rxn_a, sub in growth_dict.items():
        for rxn_b, growth in sub.items():
            sol = solution.knockout[{rxn_a, rxn_b}]
            sol_one = solution_one_process.knockout[{rxn_a, rxn_b}]
            if math.isnan(growth):
                assert math.isnan(sol.growth)
                assert math.isnan(sol_one.growth)
            else:
                assert np.isclose(sol.growth, growth, atol=1e-3)
                assert np.isclose(sol_one.growth, growth, atol=1e-3)


def test_deletion_accessor(small_model: Model) -> None:
    """Test the DataFrame accessor."""
    single = single_reaction_deletion(small_model, small_model.reactions[0:10])
    double = double_reaction_deletion(small_model, small_model.reactions[0:10])
    rxn1 = small_model.reactions[0]
    rxn2 = small_model.reactions[1]

    with pytest.raises(ValueError):
        single.knockout[1]

    with pytest.raises(ValueError):
        single.knockout[{"a": 1}]

    assert single.knockout[rxn1].ids.iloc[0] == {rxn1.id}
    assert double.knockout[{rxn1, rxn2}].ids.iloc[0] == {rxn1.id, rxn2.id}
    assert all(single.knockout[rxn1.id] == single.knockout[rxn1])
    assert all(double.knockout[{rxn1.id, rxn2.id}] == double.knockout[{rxn1, rxn2}])
    assert single.knockout[rxn1, rxn2].shape == (2, 3)
    assert double.knockout[rxn1, rxn2].shape == (2, 3)
    assert double.knockout[{rxn1, rxn2}].shape == (1, 3)
    assert double.knockout[{rxn1}, {rxn2}].shape == (2, 3)