1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
|
#!/usr/bin/env python
"""Code for handling multiple sequence alignments. In particular:
- SequenceCollection handles both aligned and unaligned sequences.
- Alignment and its subclasses handle multiple sequence alignments, storing
the raw sequences and a gap map. Useful for very long alignments, e.g.
genomics data.
- DenseAlignment and its subclasses handle multiple sequence alignments as
arrays of characters. Especially useful for short alignments that contain
many sequences.
WARNING: The various alignment objects try to guess the input type from the
input, but this behavior has a few quirks. In particular, if the input is
a sequence of two-item sequences (e.g. a list of two-character strings),
each sequence will be unpacked and the first item will be used as the
label, the second as the sequence. For example, Alignment(['AA','CC','AA'])
produces an alignment of three 1-character strings labeled A, C and A
respectively. The reason for this is that the common case is that you have
passed in a stream of two-item label, sequence pairs. However, this can
cause confusion when testing.
"""
from __future__ import division
from types import GeneratorType
from cogent.core.annotation import Map, _Annotatable
import cogent #will use to get at cogent.parse.fasta.MinimalFastaParser,
#which is a circular import otherwise.
from cogent.format.alignment import save_to_filename
from cogent.core.info import Info as InfoClass
from cogent.core.sequence import frac_same, ModelSequence
from cogent.maths.stats.util import Freqs
from cogent.format.fasta import fasta_from_alignment
from cogent.format.phylip import phylip_from_alignment
from cogent.format.nexus import nexus_from_alignment
from cogent.parse.gff import GffParser, parse_attributes
from numpy import nonzero, array, logical_or, logical_and, logical_not, \
transpose, arange, zeros, ones, take, put, uint8, ndarray
from numpy.random import randint, permutation
from cogent.util.dict2d import Dict2D
import logging
LOG = logging.getLogger('cogent.data')
from copy import copy
from cogent.core.profile import Profile
__author__ = "Peter Maxwell and Rob Knight"
__copyright__ = "Copyright 2007-2009, The Cogent Project"
__credits__ = ["Peter Maxwell", "Rob Knight", "Gavin Huttley",
"Jeremy Widmann", "Catherine Lozupone", "Matthew Wakefield",
"Micah Hamady", "Daniel McDonald"]
__license__ = "GPL"
__version__ = "1.4.1"
__maintainer__ = "Rob Knight"
__email__ = "rob@spot.colorado.edu"
__status__ = "Production"
class DataError(Exception):
pass
eps = 1e-6 #small number: 1-eps is almost 1, and is used for things like the
#default number of gaps to allow in a column.
def assign_sequential_names(ignored, num_seqs, base_name='seq', start_at=0):
"""Returns list of num_seqs sequential, unique names.
First argument is ignored; expect this to be set as a class attribute.
"""
return ['%s_%s' % (base_name,i) for i in range(start_at,start_at+num_seqs)]
class SeqLabeler(object):
"""Allows flexible seq labeling in toFasta()."""
def __init__(self, aln, label_f=assign_sequential_names, **kwargs):
"""Initializes a new seq labeler."""
self._aln = aln
self._label_f = label_f
self._map = dict(zip(aln.Names, label_f(len(aln.Names, **kwargs))))
def __call__(self, s):
"""Returns seq name from seq id"""
return self._map[s.Name]
def coerce_to_string(s):
"""Converts an arbitrary sequence into a string."""
if isinstance(s, str): #if it's a string, OK as is
return s
if isinstance(s, Aligned): #if it's an Aligned object, convert to string
return str(s)
curr = str(s) #if its string is the same length, return that
if len(curr) == len(s):
return curr
try:
return ''.join(s) #assume it's a seq of chars
except(TypeError, ValueError):
return ''.join(map(str, s)) #general case (slow, might not be correct)
def seqs_from_array(a, Alphabet=None):
"""SequenceCollection from array of pos x seq: names are integers.
This is an InputHandler for SequenceCollection. It converts an arbitrary
array of numbers into Sequence objects using seq_constructor, and
leaves the sequences unlabeled.
"""
return list(transpose(a)), None
def seqs_from_model_seqs(seqs, Alphabet=None):
"""Alignment from ModelSequence objects: seqs -> array, names from seqs.
This is an InputHandler for SequenceCollection. It converts a list of
Sequence objects with _data and Name properties into a SequenceCollection
that uses those sequences.
"""
return seqs, [s.Name for s in seqs]
def seqs_from_generic(seqs, Alphabet=None):
"""SequenceCollection from generic seq x pos data: seq of seqs of chars.
This is an InputHandler for SequenceCollection. It converts a generic list
(each item in the list will be mapped onto an object using
seq_constructor and assigns sequential integers (0-based) as names.
"""
names = []
for s in seqs:
if hasattr(s, 'Name'):
names.append(s.Name)
else:
names.append(None)
return seqs, names
def seqs_from_fasta(seqs, Alphabet=None):
"""SequenceCollection from FASTA-format string or lines.
This is an InputHandler for SequenceCollection. It converts a FASTA-format
string or collection of lines into a SequenceCollection object, preserving
order..
"""
if isinstance(seqs, str):
seqs = seqs.splitlines()
names, seqs = zip(*list(cogent.parse.fasta.MinimalFastaParser(seqs)))
return list(seqs), list(names)
def seqs_from_dict(seqs, Alphabet=None):
"""SequenceCollection from dict of {label:seq_as_str}.
This is an InputHandler for SequenceCollection. It converts a dict in
which the keys are the names and the values are the sequences
(sequence only, no whitespace or other formatting) into a
SequenceCollection. Because the dict doesn't preserve order, the result
will not necessarily be in alphabetical order."""
names, seqs = map(list, zip(*seqs.items()))
return seqs, names
def seqs_from_kv_pairs(seqs, Alphabet=None):
"""SequenceCollection from list of (key, val) pairs.
This is an InputHandler for SequenceCollection. It converts a dict in
which the keys are the names and the values are the sequences
(sequence only, no whitespace or other formatting) into a
SequenceCollection. Because the dict doesn't preserve order, the result
will be in arbitrary order."""
names, seqs = map(list, zip(*seqs))
return seqs, names
def seqs_from_aln(seqs, Alphabet=None):
"""SequenceCollection from existing SequenceCollection object: copies data.
This is relatively inefficient: you should really use the copy() method
instead, which duplicates the internal data structures.
"""
return seqs.Seqs, seqs.Names
def seqs_from_empty(obj, *args, **kwargs):
"""SequenceCollection from empty data: raise exception."""
raise ValueError, "Cannot create empty SequenceCollection."
class SequenceCollection(object):
"""Base class for Alignment, but also just stores unaligned seqs.
Handles shared functionality: detecting the input type, writing out the
sequences as different formats, translating the sequences, chopping off
stop codons, looking up sequences by name, etc.
A SequenceCollection must support:
- input handlers for different data types
- SeqData: behaves like list of lists of chars, holds seq data
- Seqs: behaves like list of Sequence objects, iterable in name order
- Names: behaves like list of names for the sequence objects
- NamedSeqs: behaves like dict of {name:seq}
- MolType: specifies what kind of sequences are in the collection
"""
InputHandlers = { 'array': seqs_from_array,
'model_seqs': seqs_from_model_seqs,
'generic': seqs_from_generic,
'fasta': seqs_from_fasta,
'collection': seqs_from_aln,
'aln': seqs_from_aln,
'dense_aln': seqs_from_aln,
'dict': seqs_from_dict,
'empty': seqs_from_empty,
'kv_pairs':seqs_from_kv_pairs,
}
IsArray = set(['array', 'model_seqs'])
DefaultNameFunction = assign_sequential_names
def __init__(self, data, Names=None, Alphabet=None, MolType=None, \
Name=None, Info=None, conversion_f=None, is_array=False, \
force_same_data=False, \
remove_duplicate_names=False, label_to_name=None,
suppress_named_seqs=False):
"""Initialize self with data and optionally Info.
We are always going to convert to characters, so Sequence objects
in the collection will lose additional special attributes they have.
This is somewhat inefficient, so it might be worth revisiting this
decision later.
The handling of sequence names requires special attention. Depending
on the input data, we might get the names from the sequences themselves,
or we might add them from Names that are passed in. However, the Names
attribute controls the order that we examine the sequences in, so if
it is passed in it should override the order that we got from the
input data (e.g. you might pass in unlabeled sequences with the names
['b','a'], so that you want the first sequence to be called 'b' and
the second to be called 'a', or you might pass in labeled sequences,
e.g. as a dict, and the names ['b','a'], indicating that you want the
sequence called b to be first and the sequence called a to be second
despite the fact that they are in arbitrary order in the original
input. In this second situation, it is imortant that the sequences not
be relabeled.
This is handled as followed. If the sequences are passed in using a
method that does not carry the names with it, the Names that are passed
in will be handed out to successive sequences. If the sequences are
passed in using a method that does carry the names with it, the Names
that are passed in will be used to order the sequences, but they will
not be relabeled. Note that if you're passing in a data type that
is already labeled (e.g. a list of Sequence objects) you _must_ have
unique names beforehand.
It's possible that this additional handling should be moved to a
separate object; the motivation for having it on Alignment __init__
is that it's easy for users to construct Alignment objects directly.
Parameters:
data: Data to convert into a SequenceCollection
Names: Order of Names in the alignment. Should match the
names of the sequences (after processing by
label_to_name if present).
Alphabet: Alphabet to use for the alignment (primarily important
for DenseAlignment)
MolType: MolType to be applied to the Alignment and to each seq.
Name: Name of the SequenceCollection.
Info: Info object to be attached to the alignment itself.
conversion_f: Function to convert string into sequence.
is_array: True if input is an array, False otherwise.
force_same_data: True if data will be used as the same object.
remove_duplicate_names: True if duplicate names are to be silently
deleted instead of raising errors.
label_to_name: if present, converts name into f(name).
"""
#read all the data in if we were passed a generator
if isinstance(data, GeneratorType):
data = list(data)
#set the Name
self.Name = Name
#figure out alphabet and moltype
self.Alphabet, self.MolType = \
self._get_alphabet_and_moltype(Alphabet, MolType, data)
if not isinstance(Info, InfoClass):
if Info:
Info = InfoClass(Info)
else:
Info = InfoClass()
self.Info = Info
#if we're forcing the same data, skip the validation
if force_same_data:
self._force_same_data(data, Names)
curr_seqs = data
#otherwise, figure out what we got and coerce it into the right type
else:
per_seq_names, curr_seqs, name_order = \
self._names_seqs_order(conversion_f, data, Names, is_array, \
label_to_name, remove_duplicate_names, \
Alphabet=self.Alphabet)
self.Names = name_order
#will take only the seqs and names that are in name_order
if per_seq_names != name_order:
good_indices = []
for n in name_order:
good_indices.append(per_seq_names.index(n))
if hasattr(curr_seqs, 'astype'): #it's an array
#much faster to check than to raise exception in this case
curr_seqs = take(curr_seqs, good_indices, axis=0)
else:
curr_seqs = [curr_seqs[i] for i in good_indices]
per_seq_names = name_order
#create NamedSeqs dict for fast lookups
if not suppress_named_seqs:
self.NamedSeqs = self._make_named_seqs(self.Names, curr_seqs)
#Sequence objects behave like sequences of chars, so no difference
#between Seqs and SeqData. Note that this differs for Alignments,
#so be careful which you use if writing methods that should work for
#both SequenceCollections and Alignments.
self._set_additional_attributes(curr_seqs)
def __str__(self):
"""Returns self in FASTA-format, respecting name order."""
return ''.join(['>%s\n%s\n' % (name, self.getGappedSeq(name))
for name in self.Names])
def _make_named_seqs(self, names, seqs):
"""Returns NamedSeqs: dict of name:seq."""
name_seq_tuples = zip(names, seqs)
for n, s in name_seq_tuples:
s.Name = n
return dict(name_seq_tuples)
def _set_additional_attributes(self, curr_seqs):
"""Sets additional attributes based on current seqs: class-specific."""
self.SeqData = curr_seqs
self._seqs = curr_seqs
try:
self.SeqLen = max(map(len, curr_seqs))
except ValueError: #got empty sequence, for some reason?
self.SeqLen = 0
def _force_same_data(self, data, Names):
"""Forces dict that was passed in to be used as self.NamedSeqs"""
self.NamedSeqs = data
self.Names = Names or data.keys()
def copy(self):
"""Returns deep copy of self."""
result = self.__class__(self, MolType=self.MolType)
def _get_alphabet_and_moltype(self, Alphabet, MolType, data):
"""Returns Alphabet and MolType, giving MolType precedence."""
if Alphabet is None and MolType is None:
if hasattr(data, 'MolType'):
MolType = data.MolType
elif hasattr(data, 'Alphabet'):
Alphabet = data.Alphabet
#check for containers
else:
curr_item = self._get_container_item(data)
if hasattr(curr_item, 'MolType'):
MolType = curr_item.MolType
elif hasattr(curr_item, 'Alphabet'):
Alphabet = curr_item.Alphabet
else:
MolType = self.MolType #will be BYTES by default
if Alphabet is not None and MolType is None:
MolType = Alphabet.MolType
if MolType is not None and Alphabet is None:
try:
Alphabet = MolType.Alphabets.DegenGapped
except AttributeError:
Alphabet = MolType.Alphabet
return Alphabet, MolType
def _get_container_item(self, data):
"""Checks container for item with Alphabet or MolType"""
curr_item = None
if hasattr(data, 'itervalues'):
curr_item = data.itervalues().next()
else:
try:
curr_item = iter(data).next()
except:
pass
return curr_item
def _strip_duplicates(self, names, seqs):
"""Internal function to strip duplicates from list of names"""
if len(set(names)) == len(names):
return set(), names, seqs
#if we got here, there are duplicates
unique_names = {}
duplicates = {}
fixed_names = []
fixed_seqs = []
for n, s in zip(names, seqs):
if n in unique_names:
duplicates[n] = 1
else:
unique_names[n] = 1
fixed_names.append(n)
fixed_seqs.append(s)
if type(seqs) is ndarray:
fixed_seqs = array(fixed_seqs, seqs.dtype)
return duplicates, fixed_names, fixed_seqs
def _names_seqs_order(self, conversion_f, data, Names, is_array, \
label_to_name, remove_duplicate_names, Alphabet=None):
"""Internal function to figure out names, seqs, and name_order."""
#figure out conversion function and whether it's an array
if not conversion_f:
input_type = self._guess_input_type(data)
is_array = input_type in self.IsArray
conversion_f = self.InputHandlers[input_type]
#set seqs and names as properties
if Alphabet:
seqs, names = conversion_f(data, Alphabet=Alphabet)
else:
seqs, names = conversion_f(data)
if names and label_to_name:
names = map(label_to_name, names)
curr_seqs = self._coerce_seqs(seqs, is_array)
#if no names were passed in as Names, if we obtained them from
#the seqs we should use them, but otherwise we should use the
#default names
if Names is None:
if (names is None) or (None in names):
per_seq_names = name_order = \
self.DefaultNameFunction(len(curr_seqs))
else: #got names from seqs
per_seq_names = name_order = names
else:
#otherwise, names were passed in as Names: use this as the order
#if we got names from the sequences, but otherwise assign the
#names to successive sequences in order
if (names is None) or (None in names):
per_seq_names = name_order = Names
else: #got names from seqs, so assume name_order is in Names
per_seq_names = names
name_order = Names
#check for duplicate names
duplicates, fixed_names, fixed_seqs = \
self._strip_duplicates(per_seq_names, curr_seqs)
if duplicates:
if remove_duplicate_names:
per_seq_names, curr_seqs = fixed_names, fixed_seqs
#if name_order doesn't have the same names as per_seq_names,
#replace it with per_seq_names
if (set(name_order) != set(per_seq_names)) or\
(len(name_order) != len(per_seq_names)):
name_order = per_seq_names
else:
raise ValueError, \
"Some names were not unique. Duplicates are:\n" + \
str(sorted(duplicates.keys()))
return per_seq_names, curr_seqs, name_order
def _coerce_seqs(self, seqs, is_array):
"""Controls how seqs are coerced in _names_seqs_order.
Override in subclasses where this behavior should differ.
"""
if is_array:
seqs = map(str, map(self.MolType.ModelSeq, seqs))
return map(self.MolType.Sequence, seqs)
def _guess_input_type(self, data):
"""Guesses input type of data; returns result as key of InputHandlers.
First checks whether data is an Alignment, then checks for some common
string formats, then tries to do it based on string or array properties.
Returns 'empty' if check fails, i.e. if it can't recognize the sequence
as a specific type. Note that bad sequences are not guaranteed to
return 'empty', and may be recognized as another type incorrectly.
"""
if isinstance(data, DenseAlignment):
return 'dense_aln'
if isinstance(data, Alignment):
return 'aln'
if isinstance(data, SequenceCollection):
return 'collection'
if isinstance(data, dict):
return 'dict'
if isinstance(data, str):
if data.startswith('>'):
return 'fasta'
else:
return 'generic'
first = None
try:
first = data[0]
except (IndexError, TypeError):
pass
try:
first = iter(data).next()
except (IndexError, TypeError, StopIteration):
pass
if first is None:
return 'empty'
try:
if isinstance(first, ModelSequence): #model sequence base type
return 'model_seqs'
elif hasattr(first, 'dtype'): #array object
return 'array'
elif isinstance(first, str) and first.startswith('>'):
return 'fasta'
else:
try:
dict(data)
return 'kv_pairs'
except (TypeError, ValueError):
pass
return 'generic'
except (IndexError, TypeError), e:
return 'empty'
def __cmp__(self, other):
"""cmp first tests as dict, then as str."""
c = cmp(self.NamedSeqs, other)
if not c:
return 0
else:
return cmp(str(self), str(other))
def keys(self):
"""keys uses self.Names, which defaults to known keys if None.
Note: returns copy, not original.
"""
return self.Names[:]
def values(self):
"""values returns values corresponding to self.Names."""
return [self.NamedSeqs[n] for n in self.Names]
def items(self):
"""items returns (name, value) pairs."""
return [(n, self.NamedSeqs[n]) for n in self.Names]
def iterSeqs(self, seq_order=None):
"""Iterates over values (sequences) in the alignment, in order.
seq_order: list of keys giving the order in which seqs will be returned.
Defaults to self.Names. Note that only these sequences will be
returned, and that KeyError will be raised if there are sequences
in order that have been deleted from the Alignment. If self.Names
is None, returns the sequences in the same order as
self.NamedSeqs.values().
Use map(f, self.seqs()) to apply the constructor f to each seq. f must
accept a single list as an argument.
Always returns references to the same objects that are values of the
alignment.
"""
ns = self.NamedSeqs
get = ns.__getitem__
for key in seq_order or self.Names:
yield get(key)
def _take_seqs(self): return list(self.iterSeqs())
Seqs = property(_take_seqs) #access as attribute if using default order.
def takeSeqs(self, seqs, negate=False, **kwargs):
"""Returns new Alignment containing only specified seqs.
Note that the seqs in the new alignment will be references to the
same objects as the seqs in the old alignment.
"""
get = self.NamedSeqs.__getitem__
result = {}
if negate:
#copy everything except the specified seqs
negated_names = []
row_lookup = dict.fromkeys(seqs)
for r, row in self.NamedSeqs.items():
if r not in row_lookup:
result[r] = row
negated_names.append(r)
seqs = negated_names #remember to invert the list of names
else:
#copy only the specified seqs
for r in seqs:
result[r] = get(r)
if result:
return self.__class__(result, Names=seqs, **kwargs)
else:
return {} #safe value; can't construct empty alignment
def getSeqIndices(self, f, negate=False):
"""Returns list of keys of seqs where f(row) is True.
List will be in the same order as self.Names, if present.
"""
get = self.NamedSeqs.__getitem__
#negate function if necessary
if negate:
new_f = lambda x: not f(x)
else:
new_f = f
#get all the seqs where the function is True
return [key for key in self.Names if new_f(get(key))]
def takeSeqsIf(self, f, negate=False, **kwargs):
"""Returns new Alignment containing seqs where f(row) is True.
Note that the seqs in the new Alignment are the same objects as the
seqs in the old Alignment, not copies.
"""
#pass negate to get SeqIndices
return self.takeSeqs(self.getSeqIndices(f, negate), **kwargs)
def iterItems(self, seq_order=None, pos_order=None):
"""Iterates over elements in the alignment.
seq_order (names) can be used to select a subset of seqs.
pos_order (positions) can be used to select a subset of positions.
Always iterates along a seq first, then down a position (transposes
normal order of a[i][j]; possibly, this should change)..
WARNING: Alignment.iterItems() is not the same as alignment.iteritems()
(which is the built-in dict iteritems that iterates over key-value
pairs).
"""
if pos_order:
for row in self.iterSeqs(seq_order):
for i in pos_order:
yield row[i]
else:
for row in self.iterSeqs(seq_order):
for i in row:
yield i
Items = property(iterItems)
def getItems(self, items, negate=False):
"""Returns list containing only specified items.
items should be a list of (row_key, col_key) tuples.
"""
get = self.NamedSeqs.__getitem__
if negate:
#have to cycle through every item and check that it's not in
#the list of items to return
item_lookup = dict.fromkeys(map(tuple, items))
result = []
for r in self.Names:
curr_row = get(r)
for c in range(len(curr_row)):
if (r, c) not in items:
result.append(curr_row[c])
return result
#otherwise, just pick the selected items out of the list
else:
return [get(row)[col] for row, col in items]
def getItemIndices(self, f, negate=False):
"""Returns list of (key,val) tuples where f(self.NamedSeqs[key][val])."""
get = self.NamedSeqs.__getitem__
if negate:
new_f = lambda x: not f(x)
else:
new_f = f
result = []
for row_label in self.Names:
curr_row = get(row_label)
for col_idx, item in enumerate(curr_row):
if new_f(item):
result.append((row_label, col_idx))
return result
def getItemsIf(self, f, negate=False):
"""Returns list of items where f(self.NamedSeqs[row][col]) is True."""
return self.getItems(self.getItemIndices(f, negate))
def getSimilar(self, target, min_similarity=0.0, max_similarity=1.0, \
metric=frac_same, transform=None):
"""Returns new Alignment containing sequences similar to target.
target: sequence object to compare to. Can be in the alignment.
min_similarity: minimum similarity that will be kept. Default 0.0.
max_similarity: maximum similarity that will be kept. Default 1.0.
(Note that both min_similarity and max_similarity are inclusive.)
metric: similarity function to use. Must be f(first_seq, second_seq).
The default metric is fraction similarity, ranging from 0.0 (0%
identical) to 1.0 (100% identical). The Sequence classes have lots
of methods that can be passed in as unbound methods to act as the
metric, e.g. fracSameGaps.
transform: transformation function to use on the sequences before
the metric is calculated. If None, uses the whole sequences in each
case. A frequent transformation is a function that returns a specified
range of a sequence, e.g. eliminating the ends. Note that the
transform applies to both the real sequence and the target sequence.
WARNING: if the transformation changes the type of the sequence (e.g.
extracting a string from an RnaSequence object), distance metrics that
depend on instance data of the original class may fail.
"""
if transform:
target = transform(target)
m = lambda x: metric(target, x)
if transform:
def f(x):
result = m(transform(x))
return min_similarity <= result <= max_similarity
else:
def f(x):
result = m(x)
return min_similarity <= result <= max_similarity
return self.takeSeqsIf(f)
def distanceMatrix(self, f):
"""Returns Matrix containing pairwise distances between sequences.
f is the distance function f(x,y) -> distance between x and y.
It's often useful to pass an unbound method in as f.
Does not assume that f(x,y) == f(y,x) or that f(x,x) == 0.
"""
get = self.NamedSeqs.__getitem__
seqs = self.NamedSeqs.keys()
result = Dict2D()
for i in seqs:
for j in seqs:
d = f(get(i), get(j))
if i not in result:
result[i] = {}
if j not in result:
result[j] = {}
result[i][j] = d
result[j][i] = d
return result
def isRagged(self):
"""Returns True if alignment has sequences of different lengths."""
seqs = self.Seqs #Get all sequences in alignment
length = len(seqs[0]) #Get length of first sequence
for seq in seqs:
#If lengths differ
if length != len(seq):
return True
#lengths were all equal
return False
def toPhylip(self, generic_label=True, make_seqlabel=None):
"""
Return alignment in PHYLIP format and mapping to sequence ids
raises exception if invalid alignment
Arguments:
- make_seqlabel: callback function that takes the seq object and
returns a label str
"""
return phylip_from_alignment(self, generic_label=generic_label,
make_seqlabel=make_seqlabel)
def toFasta(self, make_seqlabel=None):
"""Return alignment in Fasta format
Arguments:
- make_seqlabel: callback function that takes the seq object and
returns a label str
"""
return fasta_from_alignment(self, make_seqlabel=make_seqlabel)
def toNexus(self, seq_type, interleave_len=50):
"""
Return alignment in NEXUS format and mapping to sequence ids
**NOTE** Not that every sequence in the alignment MUST come from
a different species!! (You can concatenate multiple sequences from
same species together before building tree)
seq_type: dna, rna, or protein
Raises exception if invalid alignment
"""
return nexus_from_alignment(self, seq_type,
interleave_len=interleave_len)
def getIntMap(self,prefix='seq_'):
"""Returns a dict with names mapped to enumerates integer names.
- prefix: prefix for sequence label. Default = 'seq_'
- int_keys is a dict mapping int names to sorted original names.
"""
get = self.NamedSeqs.__getitem__
int_keys = dict([(prefix+str(i),k) for i,k in \
enumerate(sorted(self.NamedSeqs.keys()))])
int_map = dict([(k, copy(get(v))) for k,v in int_keys.items()])
return int_map, int_keys
def getNumSeqs(self):
"""Returns the number of sequences in the alignment."""
return len(self.NamedSeqs)
def copyAnnotations(self, unaligned):
"""Copies annotations from seqs in unaligned to self, matching by name.
Alignment programs like ClustalW don't preserve annotations,
so this method is available to copy annotations off the unaligned
sequences.
unaligned should be a dictionary of Sequence instances.
Ignores sequences that are not in self, so safe to use on larger dict
of seqs that are not in the current collection/alignment.
"""
for name, seq in unaligned.items():
if name in self.NamedSeqs:
self.NamedSeqs[name].copyAnnotations(seq)
def annotateFromGff(self, f):
"""Copies annotations from gff-format file to self.
Matches by name of sequence. This method expects a file handle, not
the name of a file.
Skips sequences in the file that are not in self.
"""
for (name, source, feature, start, end, score,
strand, frame, attributes, comments) in GffParser(f):
if name in self.NamedSeqs:
self.NamedSeqs[name].addFeature( feature,
parse_attributes(attributes),
[(start,end)])
'''
self.NamedSeqs[seqname].data.addFeature(
feature,
parse_attributes(attributes),
[(start, end)])
'''
def replaceSeqs(self, seqs):
"""Returns new alignment with same shape but with data taken from seqs.
Primary use is for aligning codons from protein alignment, or, more
generally, substituting in codons from a set of protein sequences (not
necessarily aligned). For this reason, it takes characters from seqs
three at a time rather than one at a time (i.e. 3 characters in seqs
are put in place of 1 character in self).
If seqs is an alignment, any gaps in it will be ignored.
"""
if hasattr(seqs, 'NamedSeqs'):
seqs = seqs.NamedSeqs
else:
seqs = SequenceCollection(seqs).NamedSeqs
new_seqs = []
for label in self.Names:
aligned = self.NamedSeqs[label]
seq = seqs[label]
if isinstance(seq, Aligned):
seq = seq.data
new_seqs.append((label, Aligned(aligned.map * 3, seq)))
return self.__class__(new_seqs)
def getGappedSeq(self, seq_name, recode_gaps=False):
"""Return a gapped Sequence object for the specified seqname.
Note: return type may depend on what data was loaded into the
SequenceCollection or Alignment.
"""
return self.NamedSeqs[seq_name]
def __add__(self, other):
"""Concatenates sequence data for same names"""
aligned = isinstance(self, Alignment)
if len(self.NamedSeqs) != len(other.NamedSeqs):
raise ValueError("Alignments don't have same number of sequences")
concatenated = []
for name in self.Names:
if name not in other.Names:
raise ValueError("Right alignment doesn't have a '%s'" % name)
if aligned:
new_seq = self.NamedSeqs[name].getGappedSeq() + \
other.getGappedSeq(name)
else:
new_seq = self.NamedSeqs[name] + other.getGappedSeq(name)
concatenated.append(new_seq)
new = self.__class__(MolType=self.MolType,
data=zip(self.Names, concatenated))
if aligned:
left = [a for a in self._shiftedAnnotations(new, 0) \
if a.map.End <= len(self)]
right = [a for a in other._shiftedAnnotations(new, len(self)) \
if a.map.Start >= len(self)]
new.annotations = left + right
return new
def addSeqs(self, other):
"""Adds sequences from other to self. Returns a new object.
other must be of same class as self or coerceable to that class..
"""
assert not isinstance(other, str), "Must provide a series of seqs "+\
"or an alignment"
self_seq_class = self.Seqs[0].__class__
try:
combined = self.Seqs + other.Seqs
except AttributeError:
combined = self.Seqs + list(other)
for seq in combined:
assert seq.__class__ == self_seq_class,\
"Seq classes different: Expected %s, Got %s" % \
(seq.__class__, self_seq_class)
return self.__class__(data=combined)
def writeToFile(self, filename=None, format=None, **kwargs):
"""Write the alignment to a file, preserving order of sequences.
Arguments:
- filename: name of the sequence file
- format: format of the sequence file
If format is None, will attempt to infer format from the filename
suffix.
"""
if filename is None:
raise DataError('no filename specified')
# need to turn the alignment into a dictionary
align_dict = {}
for seq_name in self.Names:
align_dict[seq_name] = str(self.NamedSeqs[seq_name])
if format is None and '.' in filename:
# allow extension to work if provided
format = filename[filename.rfind(".")+1:]
if 'order' not in kwargs:
kwargs['order'] = self.Names
save_to_filename(align_dict, filename, format, **kwargs)
def __len__(self):
"""len of SequenceCollection returns length of longest sequence."""
return self.SeqLen
def getTranslation(self, gc=None, **kwargs):
"""Returns a new alignment object with the DNA sequences translated,
using the current codon moltype, into an amino acid sequence.
"""
translated = []
aligned = isinstance(self, Alignment)
# do the translation
try:
for seqname in self.Names:
if aligned:
seq = self.getGappedSeq(seqname)
else:
seq = self.NamedSeqs[seqname]
pep = seq.getTranslation(gc)
translated.append((seqname, pep))
return self.__class__(translated, **kwargs)
except AttributeError, msg:
raise AttributeError, "%s -- %s" % (msg, "Did you set a DNA MolType?")
def getSeq(self, seqname):
"""Return a sequence object for the specified seqname.
"""
return self.NamedSeqs[seqname]
def todict(self):
"""Returns the alignment as dict of names -> strings.
Note: returns strings, NOT Sequence objects.
"""
align_dict = {}
for seq_name in self.Names:
align_dict[seq_name] = str(self.NamedSeqs[seq_name])
return align_dict
def getPerSequenceAmbiguousPositions(self):
"""Returns dict of seq:{position:char} for ambiguous chars.
Used in likelihood calculations.
"""
result = {}
for name in self.Names:
result[name] = ambig = {}
for (i, motif) in enumerate(self.getGappedSeq(name)):
if self.MolType.isAmbiguity(motif):
ambig[i] = motif
return result
def degap(self, **kwargs):
"""Returns copy in which sequences have no gaps."""
new_seqs = []
aligned = isinstance(self, Alignment)
for seq_name in self.Names:
if aligned:
seq = self.NamedSeqs[seq_name].data
else:
seq = self.NamedSeqs[seq_name]
new_seqs.append((seq_name, seq.degap()))
return SequenceCollection(MolType=self.MolType, data=new_seqs, **kwargs)
def withModifiedTermini(self):
"""Changes the termini to include termini char instead of gapmotif.
Useful to correct the standard gap char output by most
alignment programs when aligned sequences have different ends.
"""
seqs = []
for name in self.Names:
seq = self.NamedSeqs[name].withTerminiUnknown()
seqs.append((name, seq))
return self.__class__(MolType=self.MolType, data=seqs)
def hasTerminalStops(self, gc=None):
"""Returns True if any sequence has a terminal stop codon."""
stops = []
aligned = isinstance(self, Alignment)
for seq_name in self.Names:
if aligned:
seq = self.NamedSeqs[seq_name].data
else:
seq = self.NamedSeqs[seq_name]
stops.append(seq.hasTerminalStop(gc=gc))
return max(stops)
def withoutTerminalStopCodons(self, gc=None, **kwargs):
"""Removes any terminal stop codons from the sequences"""
new_seqs = []
aligned = isinstance(self, Alignment)
for seq_name in self.Names:
old_seq = self.NamedSeqs[seq_name]
if aligned:
new_seq = old_seq.data.withoutTerminalStopCodon(gc=gc)
new_seq = Aligned(old_seq.map, new_seq)
else:
new_seq = old_seq.withoutTerminalStopCodon(gc=gc)
new_seqs.append((seq_name, new_seq))
return self.__class__(MolType=self.MolType, data=new_seqs, **kwargs)
def getSeqNames(self):
"""Return a list of sequence names."""
return self.Names[:]
def getMotifProbs(self, alphabet=None, include_ambiguity=False,
exclude_unobserved=False, allow_gap=False, pseudocount=0):
"""Return a dictionary of motif probs.
Arguments:
- include_ambiguity: if True resolved ambiguous codes are
included in estimation of frequencies, default is False.
- exclude_unobserved: if True, motifs that are not present in
the alignment are excluded from the returned dictionary,
default is False.
- allow_gap: allow gap motif
"""
if alphabet is None:
alphabet = self.MolType.Alphabet
if allow_gap:
alphabet = alphabet.Gapped
counts = {}
for seq_name in self.Names:
sequence = self.NamedSeqs[seq_name]
motif_len = alphabet.getMotifLen()
if motif_len > 1:
posns = range(0, len(sequence)+1-motif_len, motif_len)
sequence = [sequence[i:i+motif_len] for i in posns]
for motif in sequence:
if not allow_gap:
if self.MolType.Gap in motif:
continue
if motif in counts:
counts[motif] += 1
else:
counts[motif] = 1
probs = {}
if not exclude_unobserved:
for motif in alphabet:
probs[motif] = pseudocount
for (motif, count) in counts.items():
motif_set = alphabet.resolveAmbiguity(motif)
if len(motif_set) > 1:
if include_ambiguity:
count = float(count) / len(motif_set)
else:
continue
for motif in motif_set:
probs[motif] = probs.get(motif, pseudocount) + count
total = float(sum(probs.values()))
for motif in probs:
probs[motif] /= total
return probs
def getGapCount(self, seq_name):
return len(self.NamedSeqs[seq_name].map.gaps())
def getSeqFreqs(self):
"""Returns Profile of counts: seq by character.
See documentation for _get_freqs: this just wraps it and converts the
result into a Profile object organized per-sequence (i.e. per row).
"""
return Profile(self._get_freqs(0), self.Alphabet)
def _make_gaps_ok(self, allowed_gap_frac):
"""Makes the gaps_ok function used by omitGapPositions and omitGapSeqs.
Need to make the function because if it's a method of Alignment, it
has unwanted 'self' and 'allowed_gap_frac' parameters that impede the
use of map() in takeSeqsIf.
WARNING: may not work correctly if component sequences have gaps that
are not the Alignment gap character. This is because the gaps are
checked at the position level (and the positions are lists), rather than
at the sequence level. Working around this issue would probably cause a
significant speed penalty.
"""
def gaps_ok(seq):
seq_len = len(seq)
try:
num_gaps = seq.countGaps()
except AttributeError:
num_gaps = len(filter(self.MolType.Gaps.__contains__, seq))
return num_gaps / seq_len <= allowed_gap_frac
return gaps_ok
def omitGapPositions(self, allowed_gap_frac=1-eps, del_seqs=False, \
allowed_frac_bad_cols=0, seq_constructor=None):
"""Returns new alignment where all cols have <= allowed_gap_frac gaps.
allowed_gap_frac says what proportion of gaps is allowed in each
column (default is 1-eps, i.e. all cols with at least one non-gap
character are preserved).
If del_seqs is True (default:False), deletes the sequences that don't
have gaps where everything else does. Otherwise, just deletes the
corresponding column from all sequences, in which case real data as
well as gaps can be removed.
Uses seq_constructor(seq) to make each new sequence object.
Note: a sequence that is all gaps will not be deleted by del_seqs
(even if all the positions have been deleted), since it has no non-gaps
in positions that are being deleted for their gap content. Possibly,
this decision should be revisited since it may be a surprising
result (and there are more convenient ways to return the sequences
that consist wholly of gaps).
"""
if seq_constructor is None:
seq_constructor = self.MolType.Sequence
gaps_ok = self._make_gaps_ok(allowed_gap_frac)
#if we're not deleting the 'naughty' seqs that contribute to the
#gaps, it's easy...
if not del_seqs:
return self.takePositionsIf(f=gaps_ok, \
seq_constructor=seq_constructor)
#otherwise, we have to figure out which seqs to delete.
#if we get here, we're doing del_seqs.
cols_to_delete = dict.fromkeys(self.getPositionIndices(gaps_ok, \
negate=True))
default_gap_f = self.MolType.Gaps.__contains__
bad_cols_per_row = {}
for key, row in self.NamedSeqs.items():
try:
is_gap = row.Alphabet.Gaps.__contains__
except AttributeError:
is_gap = default_gap_f
for col in cols_to_delete:
if not is_gap(str(row)[col]):
if key not in bad_cols_per_row:
bad_cols_per_row[key] = 1
else:
bad_cols_per_row[key] += 1
#figure out which of the seqs we're deleting
get = self.NamedSeqs.__getitem__
seqs_to_delete = {}
for key, count in bad_cols_per_row.items():
if float(count)/len(get(key)) >= allowed_frac_bad_cols:
seqs_to_delete[key] = True
#It's _much_ more efficient to delete the seqs before the cols.
good_seqs = self.takeSeqs(seqs_to_delete, negate=True)
cols_to_keep = dict.fromkeys(range(self.SeqLen))
for c in cols_to_delete:
del cols_to_keep[c]
if good_seqs:
return good_seqs.takePositions(cols=cols_to_keep.keys(), \
seq_constructor=seq_constructor)
else:
return {}
def omitGapSeqs(self, allowed_gap_frac=0):
"""Returns new alignment with seqs that have <= allowed_gap_frac.
allowed_gap_frac should be a fraction between 0 and 1 inclusive.
Default is 0.
"""
gaps_ok = self._make_gaps_ok(allowed_gap_frac)
return self.takeSeqsIf(gaps_ok)
def omitGapRuns(self, allowed_run=1):
"""Returns new alignment where all seqs have runs of gaps <=allowed_run.
Note that seqs with exactly allowed_run gaps are not deleted.
Default is for allowed_run to be 1 (i.e. no consecutive gaps allowed).
Because the test for whether the current gap run exceeds the maximum
allowed gap run is only triggered when there is at least one gap, even
negative values for allowed_run will still let sequences with no gaps
through.
"""
def ok_gap_run(x):
try:
is_gap = x.Alphabet.Gaps.__contains__
except AttributeError:
is_gap = self.MolType.Gaps.__contains__
curr_run = max_run = 0
for i in x:
if is_gap(i):
curr_run += 1
if curr_run > allowed_run:
return False
else:
curr_run = 0
#can only get here if max_run was never exceeded (although this
#does include the case where the sequence is empty)
return True
return self.takeSeqsIf(ok_gap_run)
def omitSeqsTemplate(self, template_name, gap_fraction, gap_run):
"""Returns new alignment where all seqs are well aligned with template.
gap_fraction = fraction of positions that either have a gap in the
template but not in the seq or in the seq but not in the template
gap_run = number of consecutive gaps tolerated in query relative to
sequence or sequence relative to query
"""
template = self.NamedSeqs[template_name]
gap_filter = make_gap_filter(template, gap_fraction, gap_run)
return self.takeSeqsIf(gap_filter)
def toDna(self):
"""Returns the alignment as DNA."""
new = {}
aligned = isinstance(self, Alignment)
for name, seq in self.NamedSeqs.items():
if aligned:
seq = seq.getGappedSeq()
new[name] = seq.toDna()
return self.__class__(data=new, Name = self.Name, Info = self.Info)
def toRna(self):
"""Returns the alignment as RNA"""
new = {}
aligned = isinstance(self, Alignment)
for name, seq in self.NamedSeqs.items():
if aligned:
seq = seq.getGappedSeq()
new[name] = seq.toRna()
return self.__class__(data=new, Name = self.Name, Info = self.Info)
def rc(self):
"""Returns the reverse complement alignment"""
new = {}
aligned = isinstance(self, Alignment)
for name, seq in self.NamedSeqs.items():
if aligned:
seq = seq.getGappedSeq()
new[name] = seq.rc()
rc = self.__class__(data=new, Name = self.Name, Info = self.Info)
if isinstance(self, _Annotatable):
self._annotations_nucleic_reversed_on(rc)
return rc
def reversecomplement(self):
"""Returns the reverse complement alignment. A synonymn for rc."""
return self.rc()
def padSeqs(self, pad_length=None, **kwargs):
"""Returns copy in which sequences are padded to same length.
pad_length: Length all sequences are to be padded to. Will pad
to max sequence length if pad_length is None or less than max
length.
"""
#get max length
max_len = max([len(s) for s in self.Seqs])
#If a pad_length was passed in, make sure it is valid
if pad_length is not None:
pad_length = int(pad_length)
if pad_length < max_len:
raise ValueError, \
"pad_length must be at greater or equal to maximum sequence length: %s"\
%(str(max_len))
#pad_length is max sequence length.
else:
pad_length = max_len
#Get new sequence list
new_seqs = []
aligned = isinstance(self, Alignment)
#for each sequence, pad gaps to end
for seq_name in self.Names:
if aligned:
seq = self.NamedSeqs[seq_name].data
else:
seq = self.NamedSeqs[seq_name]
padded_seq = seq + '-'*(pad_length-len(seq))
new_seqs.append((seq_name, padded_seq))
#return new SequenceCollection object
return SequenceCollection(MolType=self.MolType, data=new_seqs, **kwargs)
class Aligned(object):
"""One sequence in an alignment, a map between alignment coordinates and
sequence coordinates"""
def __init__(self, map, data, length=None):
#Unlike the normal map constructor, here we take a list of pairs of
#alignment coordinates, NOT a list of pairs of sequence coordinates
if isinstance(map, list):
map = Map(map, parent_length=length).inverse()
self.map = map
self.data = data
if hasattr(data, 'Info'):
self.Info = data.Info
if hasattr(data, 'Name'):
self.Name = data.Name
def copy(self, memo=None, _nil=[], constructor='ignored'):
"""Returns a shallow copy of self
WARNING: cogent.core.sequence.Sequence does NOT implement a copy method,
as such, the data member variable of the copied object will maintain
reference to the original object.
WARNING: cogent.core.location.Map does NOT implement a copy method, as
such, the data member variable of the copied object will maintain
reference to the original object.
"""
return self.__class__(self.map, self.data)
def __repr__(self):
return '%s of %s' % (repr(self.map), repr(self.data))
def withTerminiUnknown(self):
return self.__class__(self.map.withTerminiUnknown(), self.data)
def copyAnnotations(self, other):
self.data.copyAnnotations(other)
def annotateFromGff(self, f):
self.data.annotate_from_gff(f)
def addFeature(self, *args, **kwargs):
self.data.addFeature(*args, **kwargs)
def __str__(self):
"""Returns string representation of aligned sequence, incl. gaps."""
return str(self.getGappedSeq())
def __cmp__(self, other):
"""Compares based on string representations."""
return cmp(str(self), str(other))
def __iter__(self):
"""Iterates over sequence one motif (e.g. char) at a time, incl. gaps"""
return self.data.gappedByMapMotifIter(self.map)
def getGappedSeq(self, recode_gaps=False):
"""Returns sequence as an object, including gaps."""
return self.data.gappedByMap(self.map, recode_gaps)
def __len__(self):
# these make it look like Aligned should be a subclass of Map,
# but then you have to be careful with __getitem__, __init__ and inverse.
return len(self.map)
def __getitem__(self, slice):
return Aligned(self.map[slice], self.data)
def getTracks(self, policy):
policy = policy.at(self.map.inverse())
return self.data.getTracks(policy)
def remappedTo(self, map):
#assert map is self.parent_map or ... ?
#print 'REMAP', self.map, self
#print 'ONTO', map, map.inverse()
result = Aligned(map[self.map.inverse()].inverse(), self.data)
#print 'GIVES', result.map, result
#print
return result
def getAnnotationsMatching(self, alignment, *args):
for annot in self.data.getAnnotationsMatching(*args):
yield annot.remappedTo(alignment, self.map.inverse())
def gapVector(self):
"""Returns gapVector of GappedSeq, for omitGapPositions."""
return self.getGappedSeq().gapVector()
def _masked_annotations(self, annot_types, mask_char, shadow):
"""returns a new aligned sequence with regions defined by align_spans
and shadow masked."""
new_data = self.data.withMaskedAnnotations(annot_types, mask_char, shadow)
# we remove the mask annotations from self and new_data
return self.__class__(self.map, new_data)
class AlignmentI(object):
"""Alignment interface object. Contains methods shared by implementations.
Note that subclasses should inherit both from AlignmentI and from
SequenceCollection (typically).
Alignments are expected to be immutable once created. No mechanism is
provided for maintaining reference consistency if data in the alignment
are modified.
An Alignment is expected to be able to generate the following:
- Seqs: Sequence objects in the alignment, can turn themselves into
strings. These are usually thought of as "rows" in an
alignment.
- Positions: Vectors representing data in each position in the alignment
These are usually thought of as "columns" in an alignment.
- SeqData: Vectors representing data in each sequence in the alignment,
not necessarily guaranteed to turn themselves into a string
- Items: Iterator over the characters in the alignment
- Names: List of names of sequences in the alignment. Used for
display order. A cheap way to omit or reorder sequences is
to modify the list of names.
- NamedSeqs: Dict of name -> seq object, used for lookup.
- MolType: MolType of the alignment.
"""
DefaultGap = '-' #default gap character for padding
GapChars = dict.fromkeys('-?') #default gap chars for comparisons
def iterPositions(self, pos_order=None):
"""Iterates over positions in the alignment, in order.
pos_order refers to a list of indices (ints) specifying the column
order. This lets you rearrange positions if you want to (e.g. to pull
out individual codon positions).
Note that self.iterPositions() always returns new objects, by default
lists of elements. Use map(f, self.iterPositions) to apply the
constructor or function f to the resulting lists (f must take a single
list as a parameter). Note that some sequences (e.g. ViennaStructures)
have rules that prevent arbitrary strings of their symbols from being
valid objects.
Will raise IndexError if one of the indices in order exceeds the
sequence length. This will always happen on ragged alignments:
assign to self.SeqLen to set all sequences to the same length.
"""
get = self.NamedSeqs.__getitem__
pos_order = pos_order or xrange(self.SeqLen)
seq_order = self.Names
for pos in pos_order:
yield [get(seq)[pos] for seq in seq_order]
Positions = property(iterPositions)
def takePositions(self, cols, negate=False, seq_constructor=None):
"""Returns new Alignment containing only specified positions.
By default, the seqs will be lists, but an alternative constructor
can be specified.
Note that takePositions will fail on ragged positions.
"""
if seq_constructor is None:
seq_constructor = self.MolType.Sequence
result = {}
#if we're negating, pick out all the positions except specified indices
if negate:
col_lookup = dict.fromkeys(cols)
for key, row in self.NamedSeqs.items():
result[key] = seq_constructor([row[i] for i in range(len(row)) \
if i not in col_lookup])
#otherwise, just get the requested indices
else:
for key, row in self.NamedSeqs.items():
result[key] = seq_constructor([row[i] for i in cols])
return self.__class__(result, Names=self.Names)
def getPositionIndices(self, f, negate=False):
"""Returns list of column indices for which f(col) is True."""
#negate f if necessary
if negate:
new_f = lambda x: not f(x)
else:
new_f = f
return [i for i, col in enumerate(self.Positions) if new_f(col)]
def takePositionsIf(self, f, negate=False, seq_constructor=None):
"""Returns new Alignment containing cols where f(col) is True.
Note that the seqs in the new Alignment are always new objects. Default
constructor is list(), but an alternative can be passed in.
"""
if seq_constructor is None:
seq_constructor = self.MolType.Sequence
return self.takePositions(self.getPositionIndices(f, negate), \
seq_constructor=seq_constructor)
def IUPACConsensus(self, alphabet=None):
"""Returns string containing IUPAC consensus sequence of the alignment.
"""
if alphabet is None:
alphabet = self.MolType
consensus = []
degen = alphabet.degenerateFromSequence
for col in self.Positions:
consensus.append(degen(coerce_to_string(col)))
return coerce_to_string(consensus)
def columnFreqs(self, constructor=Freqs):
"""Returns list of Freqs with item counts for each column.
"""
return map(constructor, self.Positions)
def columnProbs(self, constructor=Freqs):
"""Returns FrequencyDistribuutions w/ prob. of each item per column.
Implemented as a list of normalized Freqs objects.
"""
freqs = self.columnFreqs(constructor)
for fd in freqs:
fd.normalize()
return freqs
def majorityConsensus(self, transform=None, constructor=Freqs):
"""Returns list containing most frequent item at each position.
Optional parameter transform gives constructor for type to which result
will be converted (useful when consensus should be same type as
originals).
"""
col_freqs = self.columnFreqs(constructor)
consensus = [freq.Mode for freq in col_freqs]
if transform == str:
return coerce_to_string(consensus)
elif transform:
return transform(consensus)
else:
return consensus
def uncertainties(self, good_items=None):
"""Returns Shannon uncertainty at each position.
Usage: information_list = alignment.information(good_items=None)
If good_items is supplied, deletes any symbols that are not in
good_items.
"""
uncertainties = []
#calculate column probabilities if necessary
if hasattr(self, 'PositionumnProbs'):
probs = self.PositionumnProbs
else:
probs = self.columnProbs()
#calculate uncertainty for each column
for prob in probs:
#if there's a list of valid symbols, need to delete everything else
if good_items:
prob = prob.copy() #do not change original
#get rid of any symbols not in good_items
for symbol in prob.keys():
if symbol not in good_items:
del prob[symbol]
#normalize the probabilities and add to the list
prob.normalize()
uncertainties.append(prob.Uncertainty)
return uncertainties
def scoreMatrix(self):
"""Returns a position specific score matrix for the alignment."""
return Dict2D(dict([(i,Freqs(col)) for i, col in enumerate(self.Positions)]))
def _get_freqs(self, index=None):
"""Gets array of freqs along index 0 (= positions) or 1 (= seqs).
index: if 0, will calculate the frequency of each symbol in each
position (=column) in the alignment. Will return 2D array where the
first index is the position, and the second index is the index of the
symbol in the alphabet. For example, for the TCAG DNA Alphabet,
result[3][0] would store the count of T at position 3 (i.e. the 4th
position in the alignment.
if 1, does the same thing except that the calculation is performed for
each sequence, so the 2D array has the sequence index as the first
index, and the symbol index as the second index. For example, for the
TCAG DNA Alphabet, result[3][0] would store the count of T in the
sequence at index 3 (i.e. the 4th sequence).
First an DenseAligment object is created, next the calculation is done
on this object. It is important that the DenseAlignment is initialized
with the same MolType and Alphabet as the original Alignment.
"""
da = DenseAlignment(self, MolType=self.MolType, Alphabet=self.Alphabet)
return da._get_freqs(index)
def getPosFreqs(self):
"""Returns Profile of counts: position by character.
See documentation for _get_freqs: this just wraps it and converts the
result into a Profile object organized per-position (i.e. per column).
"""
return Profile(self._get_freqs(1), self.Alphabet)
def sample(self, n=None, with_replacement=False, motif_length=1, \
randint=randint, permutation=permutation):
"""Returns random sample of positions from self, e.g. to bootstrap.
Arguments:
- n: the number of positions to sample from the alignment.
Default is alignment length
- with_replacement: boolean flag for determining if sampled
positions
- random_series: a random number generator with
.randint(min,max) .random() methods
Notes:
By default (resampling all positions without replacement), generates
a permutation of the positions of the alignment.
Setting with_replacement to True and otherwise leaving parameters
as defaults generates a standard bootstrap resampling of the
alignment.
"""
population_size = len(self) // motif_length
if not n:
n = population_size
if with_replacement:
locations = randint(0, population_size, n)
else:
assert n <= population_size, (n, population_size, motif_length)
locations = permutation(population_size)[:n]
positions = [(loc*motif_length, (loc+1)*motif_length)
for loc in locations]
sample = Map(positions, parent_length=len(self))
return self.gappedByMap(sample, Info=self.Info)
def slidingWindows(self, window, step):
"""Generator yielding new Alignments of given length and interval.
Arguments:
- window: The length of each returned alignment.
- step: The interval between the start of the successive
alignment objects returned.
"""
for pos in range(0, len(self)-window+1,step):
yield self[pos:pos+window]
def aln_from_array(a, array_type=None, Alphabet=None):
"""Alignment from array of pos x seq: no change, names are integers.
This is an InputHandler for Alignment. It converts an arbitrary array
of numbers without change, but adds successive integer names (0-based) to
each sequence (i.e. column) in the input a. Data type of input is
unchanged.
"""
if array_type is None:
result = a.copy()
else:
result = a.astype(array_type)
return transpose(result), None
def aln_from_model_seqs(seqs, array_type=None, Alphabet=None):
"""Alignment from ModelSequence objects: seqs -> array, names from seqs.
This is an InputHandler for Alignment. It converts a list of Sequence
objects with _data and Label properties into the character array Alignment
needs. All sequences must be the same length.
WARNING: Assumes that the ModelSeqs are already in the right alphabet. If
this is not the case, e.g. if you are putting sequences on a degenerate
alphabet into a non-degenerate alignment or you are putting protein
sequences into a DNA alignment, there will be problems with the alphabet
mapping (i.e. the resulting sequences may be meaningless).
WARNING: Data type of return array is not guaranteed -- check in caller!
"""
data, names = [], []
for s in seqs:
data.append(s._data)
names.append(s.Name)
result = array(data)
if array_type:
result = result.astype(array_type)
return result, names
def aln_from_generic(data, array_type=None, Alphabet=None):
"""Alignment from generic seq x pos data: sequence of sequences of chars.
This is an InputHandler for Alignment. It converts a generic list (each
item in the list will be mapped onto an Array object, with character
transformations, all items must be the same length) into a numpy array,
and assigns sequential integers (0-based) as names.
WARNING: Data type of return array is not guaranteed -- check in caller!
"""
result = array(map(Alphabet.toIndices, data))
names = []
for d in data:
if hasattr(d, 'Name'):
names.append(d.Name)
else:
names.append(None)
if array_type:
result = result.astype(array_type)
return result, names
def aln_from_collection(seqs, array_type=None, Alphabet=None):
"""Alignment from SequenceCollection object, or its subclasses."""
names = seqs.Names
data = [seqs.NamedSeqs[i] for i in names]
result = array(map(Alphabet.toIndices, data))
if array_type:
result = result.astype(array_type)
return result, names
def aln_from_fasta(seqs, array_type=None, Alphabet=None):
"""Alignment from FASTA-format string or lines.
This is an InputHandler for Alignment. It converts a FASTA-format string
or collection of lines into an Alignment object. All sequences must be the
same length.
WARNING: Data type of return array is not guaranteed -- check in caller!
"""
if isinstance(seqs, str):
seqs = seqs.splitlines()
return aln_from_model_seqs([ModelSequence(s, Name=l, Alphabet=Alphabet)\
for l, s in cogent.parse.fasta.MinimalFastaParser(seqs)], array_type)
def aln_from_dict(aln, array_type=None, Alphabet=None):
"""Alignment from dict of {label:seq_as_str}.
This is an InputHandler for Alignment. It converts a dict in which the
keys are the names and the values are the sequences (sequence only, no
whitespace or other formatting) into an alignment. Because the dict
doesn't preserve order, the result will be in alphabetical order."""
names, seqs = zip(*sorted(aln.items()))
result = array(map(Alphabet.toIndices, seqs), array_type)
return result, list(names)
def aln_from_kv_pairs(aln, array_type=None, Alphabet=None):
"""Alignment from sequence of (key, value) pairs.
This is an InputHandler for Alignment. It converts a list in which the
first item of each pair is the label and the second item is the sequence
(sequence only, no whitespace or other formatting) into an alignment.
Because the dict doesn't preserve order, the result will be in arbitrary
order."""
names, seqs = zip(*aln)
result = array(map(Alphabet.toIndices, seqs), array_type)
return result, list(names)
def aln_from_dense_aln(aln, array_type=None, Alphabet=None):
"""Alignment from existing DenseAlignment object: copies data.
Retrieves data from Positions field. Uses copy(), so array data type
should be unchanged.
"""
if array_type is None:
result = aln.ArrayPositions.copy()
else:
result = aln.ArrayPositions.astype(array_type)
return transpose(result), aln.Names[:]
def aln_from_empty(obj, *args, **kwargs):
"""Alignment from empty data: raise exception."""
raise ValueError, "Cannot create empty alignment."
#Implementation of Alignment base class
class DenseAlignment(AlignmentI, SequenceCollection):
"""Holds a dense array representing a multiple sequence alignment.
An Alignment is _often_, but not necessarily, an array of chars. You might
want to use some other data type for the alignment if you have a large
number of symbols. For example, codons on an ungapped DNA alphabet has
4*4*4=64 entries so can fit in a standard char data type, but tripeptides
on the 20-letter ungapped protein alphabet has 20*20*20=8000 entries so
can _not_ fit in a char and values will wrap around (i.e. you will get an
unpredictable, wrong value for any item whose index is greater than the
max value, e.g. 255 for uint8), so in this case you would need to use
UInt16, which can hold 65536 values. DO NOT USE SIGNED DATA TYPES FOR YOUR
ALIGNMENT ARRAY UNLESS YOU LOVE MISERY AND HARD-TO-DEBUG PROBLEMS.
Implementation: aln[i] returns position i in the alignment.
aln.Positions[i] returns the same as aln[i] -- usually, users think of this
as a 'column', because alignment editors such as Clustal typically display
each sequence as a row so a position that cuts across sequences is a
column.
aln.Seqs[i] returns a sequence, or 'row' of the alignment in standard
terminology.
WARNING: aln.Seqs and aln.Positions are different views of the same array,
so if you change one you will change the other. This will no longer be
true if you assign to Seqs or Positions directly, so don't do it. If you
want to change the data in the whole array, always assign to a slice so
that both views update: aln.Seqs[:] = x instead of aln.Seqs = x. If you
get the two views out of sync, you will get all sorts of exceptions. No
validation is performed on aln.Seqs and aln.Positions for performance
reasons, so this can really get you into trouble.
Alignments are immutable, though this is not enforced. If you change the
data after the alignment is created, all sorts of bad things might happen.
Class properties:
Alphabet: should be an Alphabet object. Must provide mapping between items
(possibly, but not necessarily, characters) in the alignment and indices
of those characters in the resulting Alignment object.
SequenceType: Constructor to use when building sequences. Default: Sequence
InputHandlers: dict of {input_type:input_handler} where input_handler is
from the InputHandlers above and input_type is a result of the method
self._guess_input_type (should always be a string).
Creating a new array will always result in a new object unless you use
the force_same_object=True parameter.
WARNING: Rebinding the Names attribute in a DenseAlignment is not
recommended because not all methods will use the updated name order. This
is because the original sequence and name order are used to produce data
structures that are cached for efficiency, and are not updated if you
change the Names attribute.
WARNING: DenseAlignment strips off Info objects from sequences that have
them, primarily for efficiency.
"""
MolType = None #will be set to BYTES on moltype import
Alphabet = None #will be set to BYTES.Alphabet on moltype import
InputHandlers = { 'array':aln_from_array,
'model_seqs':aln_from_model_seqs,
'generic':aln_from_generic,
'fasta':aln_from_fasta,
'dense_aln':aln_from_dense_aln,
'aln':aln_from_collection,
'collection':aln_from_collection,
'dict':aln_from_dict,
'kv_pairs':aln_from_kv_pairs,
'empty':aln_from_empty,
}
def __init__(self, *args, **kwargs):
"""Returns new DenseAlignment object. Inherits from SequenceCollection.
"""
kwargs['suppress_named_seqs'] = True
super(DenseAlignment, self).__init__(*args, **kwargs)
self.ArrayPositions = transpose(\
self.SeqData.astype(self.Alphabet.ArrayType))
self.ArraySeqs = transpose(self.ArrayPositions)
self.SeqData = self.ArraySeqs
self.SeqLen = len(self.ArrayPositions)
def _force_same_data(self, data, Names):
"""Forces array that was passed in to be used as self.ArrayPositions"""
if isinstance(data, DenseAlignment):
data = data._positions
self.ArrayPositions = data
self.Names = Names or self.DefaultNameFunction(len(data[0]))
def _get_positions(self):
"""Override superclass Positions to return positions as symbols."""
return map(self.Alphabet.fromIndices, self.ArrayPositions)
Positions = property(_get_positions)
def _get_named_seqs(self):
if not hasattr(self, '_named_seqs'):
seqs = map(self.Alphabet.toString, self.ArraySeqs)
if self.MolType:
seqs = map(self.MolType.Sequence, seqs)
self._named_seqs = self._make_named_seqs(self.Names, seqs)
return self._named_seqs
NamedSeqs = property(_get_named_seqs)
def keys(self):
"""Supports dict-like interface: returns names as keys."""
return self.Names
def values(self):
"""Supports dict-like interface: returns seqs as Sequence objects."""
return [self.Alphabet.MolType.ModelSeq(i, Alphabet=self.Alphabet) \
for i in self.ArraySeqs]
def items(self):
"""Supports dict-like interface; returns (name, seq) pairs."""
return zip(self.keys(), self.values())
def __iter__(self):
"""iter(aln) iterates over positions, returning array slices.
Each item in the result is be a position ('column' in standard
terminology) within the alignment, with the sequneces in the same
order as in the names.
The result shares data with the original array, so if you change
the result you change the Alignment.
"""
return iter(self.Positions)
def __getitem__(self, item):
"""getitem delegates to self.Positions., returning array slices.
The result is a column or slice of columns, supporting full slice
functionality (including stride). Use this to get a selection of
positions from the alignment.
Result shares data with the original array, so if you change the
result you change the Alignment.
"""
return self.Positions[item]
def _coerce_seqs(self, seqs, is_array):
"""Controls how seqs are coerced in _names_seqs_order.
Override in subclasses where this behavior should differ.
"""
return seqs
def getSubAlignment(self, seqs=None, pos=None, invert_seqs=False, \
invert_pos=False):
"""Returns subalignment of specified sequences and positions.
seqs and pos can be passed in as lists of sequence indices to keep
or positions to keep.
invert_seqs: if True (default False), gets everything _except_ the
specified sequences.
invert_pos: if True (default False), gets everything _except_ the
specified positions.
Unlike most of the other code that gets things out of an alignment,
this method returns a new alignment that does NOT share data with the
original alignment.
"""
#figure out which positions to keep, and keep them
if pos is not None:
if invert_pos:
pos_mask = ones(len(self.ArrayPositions))
put(pos_mask, pos, 0)
pos = nonzero(pos_mask)[0]
data = take(self.ArrayPositions, pos, axis=0)
else:
data = self.ArrayPositions
#figure out which sequences to keep, and keep them
if seqs is not None:
if invert_seqs:
seq_mask = ones(len(self.ArraySeqs))
put(seq_mask, seqs, 0)
seqs = nonzero(seq_mask)[0]
data = take(data, seqs, 1)
names = [self.Names[i] for i in seqs]
else:
names = self.Names
return self.__class__(data, map(str,names), self.Alphabet, \
conversion_f=aln_from_array)
def __str__(self):
"""Returns FASTA-format string.
Should be able to handle joint alphabets, e.g. codons.
"""
result = []
names = map(str, self.Names)
max_label_length = max(map(len, names)) + 1
seq2str = self.Alphabet.fromIndices
for l, s in zip(self.Names, self.ArraySeqs):
result.append('>'+str(l)+'\n'+''.join(seq2str(s)))
return '\n'.join(result) + '\n'
def _get_freqs(self, index=None):
"""Gets array of freqs along index 0 (= positions) or 1 (= seqs).
index: if 0, will calculate the frequency of each symbol in each
position (=column) in the alignment. Will return 2D array where the
first index is the position, and the second index is the index of the
symbol in the alphabet. For example, for the TCAG DNA Alphabet,
result[3][0] would store the count of T at position 3 (i.e. the 4th
position in the alignment.
if 1, does the same thing except that the calculation is performed for
each sequence, so the 2D array has the sequence index as the first
index, and the symbol index as the second index. For example, for the
TCAG DNA Alphabet, result[3][0] would store the count of T in the
sequence at index 3 (i.e. the 4th sequence).
"""
if index:
a = self.ArrayPositions
else:
a = self.ArraySeqs
count_f = self.Alphabet.counts
return array(map(count_f, a))
def getPosFreqs(self):
"""Returns Profile of counts: position by character.
See documentation for _get_freqs: this just wraps it and converts the
result into a Profile object organized per-position (i.e. per column).
"""
return Profile(self._get_freqs(1), self.Alphabet)
def getSeqEntropy(self):
"""Returns array containing Shannon entropy for each seq in self.
Uses the profile object from getSeqFreqs (see docstring) to calculate
the per-symbol entropy in each sequence in the alignment, i.e. the
uncertainty about each symbol in each sequence (or row). This can be
used to, for instance, filter low-complexity sequences.
"""
p = self.getSeqFreqs()
p.normalizePositions()
return p.rowUncertainty()
def getPosEntropy(self):
"""Returns array containing Shannon entropy for each pos in self.
Uses the profile object from getPosFreqs (see docstring) to calculate
the per-symbol entropy in each position in the alignment, i.e. the
uncertainty about each symbol at each position (or column). This can
be used to, for instance, detect the level of conservation at each
position in an alignment.
"""
p = self.getPosFreqs()
p.normalizePositions()
return p.rowUncertainty()
def IUPACConsensus(self, alphabet=None):
"""Returns string containing IUPAC consensus sequence of the alignment.
"""
if alphabet is None:
alphabet = self.MolType
consensus = []
degen = alphabet.degenerateFromSequence
for col in self.Positions:
consensus.append(degen(str(alphabet.ModelSeq(col, \
Alphabet=alphabet.Alphabets.DegenGapped))))
return coerce_to_string(consensus)
def _make_gaps_ok(self, allowed_gap_frac):
"""Makes the gaps_ok function used by omitGapPositions and omitGapSeqs.
Need to make the function because if it's a method of Alignment, it
has unwanted 'self' and 'allowed_gap_frac' parameters that impede the
use of map() in takeSeqsIf.
WARNING: may not work correctly if component sequences have gaps that
are not the Alignment gap character. This is because the gaps are
checked at the column level (and the positions are lists), rather than
at the row level. Working around this issue would probably cause a
significant speed penalty.
"""
def gaps_ok(seq):
seq_len = len(seq)
if hasattr(seq, 'countGaps'):
num_gaps = seq.countGaps()
elif hasattr(seq, 'count'):
num_gaps = seq.count(self.Alphabet.Gap)
else:
num_gaps = sum(seq==self.Alphabet.GapIndex)
return num_gaps / seq_len <= allowed_gap_frac
return gaps_ok
def columnFreqs(self, constructor=Freqs):
"""Returns list of Freqs with item counts for each column.
"""
return map(constructor, self.Positions)
def sample(self, n=None, with_replacement=False, motif_length=1, \
randint=randint, permutation=permutation):
"""Returns random sample of positions from self, e.g. to bootstrap.
Arguments:
- n: the number of positions to sample from the alignment.
Default is alignment length
- with_replacement: boolean flag for determining if sampled
positions
- randint and permutation: functions for random integer in a
specified range, and permutation, respectively.
Notes:
By default (resampling all positions without replacement), generates
a permutation of the positions of the alignment.
Setting with_replacement to True and otherwise leaving parameters
as defaults generates a standard bootstrap resampling of the
alignment.
"""
population_size = len(self) // motif_length
if not n:
n = population_size
if with_replacement:
locations = randint(0, population_size, n)
else:
assert n <= population_size, (n, population_size, motif_length)
locations = permutation(population_size)[:n]
#check if we need to convert coords for multi-width motifs
if motif_length > 1:
locations = (locations*motif_length).repeat(motif_length)
wrapped_locations =locations.reshape((n,motif_length))
wrapped_locations += arange(motif_length)
positions = take(self.ArrayPositions, locations, 0)
result = self.__class__(positions.T,force_same_data=True, \
Info=self.Info, Names=self.Names)
return result
def aln_from_fasta_codons(seqs, array_type=None, Alphabet=None):
"""Codon alignment from FASTA-format string or lines.
This is an InputHandler for taking a FASTA-format string of individual
bases and converting it into an array by way of a CodonSequence object
that groups triples of bases together and converts them into symbols on
the codon alphabet (i.e. each group of 3 bases together is coded by a
single symbol). This needs to override the normal aln_from_fasta
InputHandler, which asssumes that it can convert the string into the
array directly without this grouping step.
"""
if isinstance(seqs, str):
seqs = seqs.split('\n')
return aln_from_model_seqs([CodonSequenceGap(s, Label=l) for l, s \
in cogent.parse.fasta.MinimalFastaParser(seqs)])
def xsample(self, n=None, with_replacement=False, motif_length=1, \
random_series=random):
"""Returns random sample of positions from self, e.g. to bootstrap.
Arguments:
- n: the number of positions to sample from the alignment.
Default is alignment length
- with_replacement: boolean flag for determining if sampled
positions
- random_series: a random number generator with
.randint(min,max) .random() methods
Notes:
By default (resampling all positions without replacement), generates
a permutation of the positions of the alignment.
Setting with_replacement to True and otherwise leaving parameters
as defaults generates a standard bootstrap resampling of the
alignment.
"""
population_size = len(self) // motif_length
if not n:
n = population_size
if with_replacement:
locations = [random_series.randint(0, population_size)
for samp in xrange(n)]
else:
assert n <= population_size, (n, population_size, motif_length)
locations = random_series.sample(xrange(population_size), n)
positions = [(loc*motif_length, (loc+1)*motif_length)
for loc in locations]
sample = Map(positions, parent_length=len(self))
return self.gappedByMap(sample, Info=self.Info)
class CodonDenseAlignment(DenseAlignment):
"""Stores alignment of gapped codons, no degenerate symbols."""
InputHandlers = { 'array':aln_from_array,
'seqs':aln_from_model_seqs,
'generic':aln_from_generic,
'fasta':aln_from_fasta_codons,
'dense_aln':aln_from_dense_aln,
'aln': aln_from_collection,
'collection':aln_from_collection,
'dict':aln_from_dict,
'empty':aln_from_empty,
}
def make_gap_filter(template, gap_fraction, gap_run):
"""Returns f(seq) -> True if no gap runs and acceptable gap fraction.
Calculations relative to template.
gap_run = number of consecutive gaps allowed in either the template or seq
gap_fraction = fraction of positions that either have a gap in the template
but not in the seq or in the seq but not in the template
NOTE: template and seq must both be ModelSequence objects.
"""
template_gaps = array(template.gapVector())
def result(seq):
"""Returns True if seq adhers to the gap threshold and gap fraction."""
seq_gaps = array(seq.gapVector())
#check if gap amount bad
if sum(seq_gaps!=template_gaps)/float(len(seq)) > gap_fraction:
return False
#check if gap runs bad
if '\x01'*gap_run in logical_and(seq_gaps, \
logical_not(template_gaps)).astype(uint8).tostring():
return False
#check if insertion runs bad
elif '\x01'*gap_run in logical_and(template_gaps, \
logical_not(seq_gaps)).astype(uint8).tostring():
return False
return True
return result
class Alignment(_Annotatable, AlignmentI, SequenceCollection):
MolType = None #note: this is reset to ASCII in moltype module
def __init__(self, *args, **kwargs):
"""Returns new Alignment object: see SequenceCollection."""
SequenceCollection.__init__(self, *args, **kwargs)
#need to convert seqs to Aligned objects
seqs = self.SeqData
names = self.Names
self._motif_probs = {}
self._type = self.MolType.gettype()
lengths = map(len, self.SeqData)
if lengths and (max(lengths) != min(lengths)):
raise DataError, "Not all sequences are the same length:\n" + \
"max is %s, min is %s" % (max(lengths), min(lengths))
aligned_seqs = []
for s, n in zip(seqs, names):
if isinstance(s, Aligned):
s.Name = n #ensure consistency
aligned_seqs.append(s)
else:
aligned_seqs.append(self._seq_to_aligned(s, n))
self.NamedSeqs = self.AlignedSeqs = dict(zip(names, aligned_seqs))
self.SeqData = self._seqs = aligned_seqs
def _coerce_seqs(self, seqs, is_array):
if not min([isinstance(seq, _Annotatable) or isinstance(seq, Aligned) for seq in seqs]):
seqs = map(self.MolType.Sequence, seqs)
return seqs
def _seq_to_aligned(self, seq, key):
"""Converts seq to Aligned object -- override in subclasses"""
new_seq = self.MolType.Sequence(seq, key)
aligned = Aligned(*new_seq.parseOutGaps())
if hasattr(seq, "annotations"):
aligned.data.copyAnnotations(seq)
return aligned
def getTracks(self, policy):
# drawing code related
# same as sequence but annotations go below sequence tracks
return policy.tracksForAlignment(self)
def getChildTracks(self, policy):
"""The only Alignment method required for cogent.draw"""
tracks = []
for label in self.Names:
seq = self.NamedSeqs[label]
tracks += seq.getTracks(policy.copy(seqname=label))
return tracks
def __repr__(self):
seqs = []
limit = 10
delimiter = ''
for (count, name) in enumerate(self.Names):
if count == 3:
seqs.append('...')
break
elts = list(self.getGappedSeq(name)[:limit+1])
if len(elts) > limit:
elts.append('...')
seqs.append("%s[%s]" % (name, delimiter.join(elts)))
seqs = ', '.join(seqs)
return "%s x %s %s alignment: %s" % (len(self.Names),
self.SeqLen, self._type, seqs)
def _mapped(self, slicemap):
align = []
for name in self.Names:
align.append((name, self.NamedSeqs[name][slicemap]))
return self.__class__(MolType=self.MolType, data=align)
def gappedByMap(self, keep, **kwargs):
# keep is a Map
seqs = []
for seq_name in self.Names:
aligned = self.NamedSeqs[seq_name]
seqmap = aligned.map[keep]
seq = aligned.data.gappedByMap(seqmap)
seqs.append((seq_name, seq))
return self.__class__(MolType=self.MolType, data=seqs, **kwargs)
def getProjectedAnnotations(self, seq_name, *args):
aligned = self.NamedSeqs[seq_name]
seq_annots = self.getAnnotationsMatching(*args)
return [a.remappedTo(aligned.data, aligned.map) for a in seq_annots]
def getAnnotationsFromSequence(self, seq_name, *args):
aligned = self.NamedSeqs[seq_name]
return aligned.getAnnotationsMatching(self, *args)
def getAnnotationsFromAnySequence(self, *args):
result = []
for seq_name in self.Names:
result.extend(self.getAnnotationsFromSequence(seq_name, *args))
return result
def getBySequenceAnnotation(self, seq_name, *args):
result = []
for feature in self.getAnnotationsFromSequence(seq_name, *args):
segment = self[feature.map.Start:feature.map.End]
segment.Name = '%s "%s" %s to %s of %s' % (
feature.type, feature.Name,
feature.map.Start, feature.map.End, self.Name or '')
result.append(segment)
return result
def withMaskedAnnotations(self, annot_types, mask_char=None, shadow=False):
"""returns an alignment with annot_types regions replaced by mask_char
if shadow is False, otherwise all other regions are masked.
Arguments:
- annot_types: annotation type(s)
- mask_char: must be a character valid for the seq MolType. The
default value is the most ambiguous character, eg. '?' for DNA
- shadow: whether to mask the annotated regions, or everything but
the annotated regions"""
masked_seqs = []
for seq in self.Seqs:
# we mask each sequence using these spans
masked_seqs += [seq._masked_annotations(annot_types,mask_char,shadow)]
new = self.__class__(data=masked_seqs, Info=self.Info, Name=self.Name)
return new
def variablePositions(self, include_gap_motif = True):
"""Return a list of variable position indexes.
Arguments:
- include_gap_motif: if False, sequences with a gap motif in a
column are ignored."""
seqs = [self.getGappedSeq(n) for n in self.Names]
seq1 = seqs[0]
positions = zip(*seqs[1:])
result = []
for (position, (motif1, column)) in enumerate(zip(seq1,positions)):
for motif in column:
if motif != motif1:
if include_gap_motif:
result.append(position)
break
elif motif != '-' and motif1 != '-':
result.append(position)
break
return result
def filtered(self, predicate, motif_length=1, **kwargs):
"""The alignment positions where predicate(column) is true.
Arguments:
- predicate: a callback function that takes an tuple of motifs and
returns True/False
- motif_length: length of the motifs the sequences should be split
into, eg. 3 for filtering aligned codons."""
gv = []
kept = False
seqs = [self.getGappedSeq(n).getInMotifSize(motif_length,
**kwargs) for n in self.Names]
positions = zip(*seqs)
for (position, column) in enumerate(positions):
keep = predicate(column)
if kept != keep:
gv.append(position*motif_length)
kept = keep
if kept:
gv.append(len(positions)*motif_length)
locations = [(gv[i], gv[i+1]) for i in range(0, len(gv), 2)]
keep = Map(locations, parent_length=len(self))
return self.gappedByMap(keep, Info=self.Info)
def getSeq(self, seqname):
"""Return a ungapped Sequence object for the specified seqname.
Note: always returns Sequence object, not ModelSequence.
"""
return self.NamedSeqs[seqname].data
def getGappedSeq(self, seq_name, recode_gaps=False):
"""Return a gapped Sequence object for the specified seqname.
Note: always returns Sequence object, not ModelSequence.
"""
return self.NamedSeqs[seq_name].getGappedSeq(recode_gaps)
def iterPositions(self, pos_order=None):
"""Iterates over positions in the alignment, in order.
pos_order refers to a list of indices (ints) specifying the column
order. This lets you rearrange positions if you want to (e.g. to pull
out individual codon positions).
Note that self.iterPositions() always returns new objects, by default
lists of elements. Use map(f, self.iterPositions) to apply the
constructor or function f to the resulting lists (f must take a single
list as a parameter). Note that some sequences (e.g. ViennaStructures)
have rules that prevent arbitrary strings of their symbols from being
valid objects.
Will raise IndexError if one of the indices in order exceeds the
sequence length. This will always happen on ragged alignments:
assign to self.SeqLen to set all sequences to the same length.
"""
get = self.NamedSeqs.__getitem__
pos_order = pos_order or xrange(self.SeqLen)
seq_order = self.Names
aligned_objs = [get(seq) for seq in seq_order]
seqs = map(str, aligned_objs)
for pos in pos_order:
yield [seq[pos] for seq in seqs]
Positions = property(iterPositions)
def withGapsFrom(self, template):
"""Same alignment but overwritten with the gaps from 'template'"""
if len(self) != len(template):
raise ValueError("Template alignment must be same length")
gap = self.Alphabet.Gap
tgp = template.Alphabet.Gap
result = {}
for name in self.Names:
seq = self.getGappedSeq(name)
if name not in template.Names:
raise ValueError("Template alignment doesn't have a '%s'"
% name)
gsq = template.getGappedSeq(name)
assert len(gsq) == len(seq)
combo = []
for (s,g) in zip(seq, gsq):
if g == tgp:
combo.append(gap)
else:
combo.append(s)
result[name] = combo
return Alignment(result, Alphabet=self.Alphabet.withGapMotif())
|