1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
|
#!/usr/bin/env python
"""
alphabet.py
Contains classes for representing alphabets, and more general ordinations that
map between a set of symbols and indices for storing the results in tables.
The provided alphabets are those encountered in biological sequences, but other
alphabets are certainly possible.
WARNING: do access the standard Alphabets directly. It is expected that you
will access them through the appropriate MolType. Until the moltype module
has been imported, the Alphabets will not know their MolType, which will
cause problems. It is often useful to create Alphabets
and/or Enumerations on the fly, however.
MolType provides services for resolving ambiguities, or providing the
correct ambiguity for recoding -- will move to its own module.
"""
from cogent.util.array import cartesian_product
import re
import string
import logging
LOG = logging.getLogger('cogent.data')
from numpy import array, sum, transpose, remainder, zeros, arange, newaxis, \
ravel, asarray, fromstring, take, uint8, uint16, uint32, take
from string import maketrans, translate
import numpy
Float = numpy.core.numerictypes.sctype2char(float)
Int = numpy.core.numerictypes.sctype2char(int)
__author__ = "Peter Maxwell, Gavin Huttley and Rob Knight"
__copyright__ = "Copyright 2007-2009, The Cogent Project"
__credits__ = ["Peter Maxwell", "Gavin Huttley", "Rob Knight",
"Andrew Butterfield"]
__license__ = "GPL"
__version__ = "1.4.1"
__maintainer__ = "Gavin Huttley"
__email__ = "gavin.huttley@anu.edu.au"
__status__ = "Production"
class AlphabetError(Exception):
pass
def get_array_type(num_elements):
"""Returns smallest array type that can contain sequence on num_elements.
Used to figure out how large a data type is needed for the array in which
elements are indices from an alphabet. If the data type is too small
(e.g. you allocated an uint8 array, with 256 possible states (0-255), but
your data actually have more than 256 states, e.g. tripeptide data with
20*20*20 = 8000 states), when you assign a state larger than the data type
can hold you'll get an unexpected result. For example, assigning state
800 in an array that can only hold 256 different states will actually
give you the result mod 256:
>>> a = array(range(10), uint8)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9],'B')
>>> a[0] = 800
>>> a
array([32, 1, 2, 3, 4, 5, 6, 7, 8, 9],'B')
^^
NOTE: element 1 is _not_ 800, but instead 32 -- nasty surprise!
Getting the size of the necessary array from the Alphabet is a good
solution to this problem.
WARNING: Will not overflow if somehow you manage to feed it an alphabet
with more than 2**32 elements, but it seems unlikely that this will
happen very often in practice...
"""
if num_elements <= 256:
return uint8
elif num_elements <= 2**16:
return uint16
return uint32
def _make_translation_tables(a):
"""Makes translation tables between chars and indices.
Return value is a tuple containing (a) the translation table where
s.translate(a) -> array data, i.e. mapping characters to numbers, and
(b) the translation table where a.tostring().translate(s) -> string of
the characters in the original alphabet (e.g. array of 0..4 converted
to strings of UCAG...).
This is useful for alphabets where the entries are all single characters
(e.g.nucleotides or amino acids, but not codons) because we can use
translate() on the input string to make the array of values we need instead
of having to convert each character into a Python object and look it up in
some mapping. Using translate() can be thousands of times faster, so it's
almost always worth it if you have a choice.
"""
indices = ''.join(map(chr, range(len(a))))
chars = ''.join(a)
return maketrans(indices, chars), maketrans(chars, indices)
def _make_complement_array(a, complements):
"""Makes translation array between item indices and their complements."""
comps = [complements.get(i, i) for i in a]
return array(map(a.index, comps))
class Enumeration(tuple):
"""An ordered set of objects, e.g. a list of taxon labels or sequence ids.
An Enumeration maps items to indices, and vice versa.
Immutable. Must initialize with a sequence of (hashable) objects, in order.
This is the base class for Alphabets. An Alphabet is a special case of
Enumeration in which all the objects are strings of the same length.
Stored as a tuple, but remember that if the elements in the tuple are
mutable you can still mutate them in-place. Don't do this if you want
your enumeration to work in a predictable fashion.
Optionally takes a Gap parameter that defines the standard gap that will
be used for output or for operations that act on gaps. Typically, this
will be '-' or None, depending on the application.
"""
def __new__(cls, data=[], Gap=None, MolType=None):
"""Returns a new Enumeration object.
data can be any sequence that can be passed to the tuple() constructor.
Takes Gap as an argument but ignores it (handled in __init__).
"""
return tuple.__new__(cls,data)
def __init__(self, data=[], Gap=None, MolType=None):
"""Initializes self from data, and optionally a gap.
An Enumeration object mainly provides the mapping between objects and
order so that you can convert symbols on an enumeration into numeric
indices (e.g. recoding UCAG as the numbers 0,1,2,3, or recoding
the set of species ['Human', 'Mouse', 'Fly'] as indices 0, 1 and 2
in a matrix.
Properties:
_obj_to_index: dict mapping the objects onto indices for fast lookup.
index: provides the index of an object.
__getitem__: provides the object at a specified index.
Shape: shape of the data, typically an n x 1 array.
_allowed_range: stores the range in which the enumeration elements occur
(used for summing items that match a particular symbol).
Gap: item to be used as a gap -- should typically appear in data too.
ArrayType: type of array needed to store all the symbols in the
enumeration, e.g. if your enumeration has > 256 objects in it you need
to use uint16, not uint8, because it will wrap around otherwise. Also
constrains the types to unsigned integer types so you don't
accidentally use negative numbers as indices (this is very bad when
doing indexed lookups).
"""
self.MolType = MolType
#check if motif lengths are homogeneous -- if so, set length
try:
motif_lengths = frozenset(map(len, self))
if len(motif_lengths) > 1:
self._motiflen = None
else:
self._motiflen = list(motif_lengths)[0]
except TypeError: #some motifs don't support __len__, e.g. ints
self._motiflen = None
#make the quick_motifset for fast lookups; check for duplicates.
self._quick_motifset = frozenset(self)
if len(self._quick_motifset) != len(self):
#got duplicates: show user what they sent in
raise TypeError, 'Alphabet initialized with duplicate values:\n' +\
str(self)
self._obj_to_index = dict(zip(self, range(len(self))))
#handle gaps
self.Gap = Gap
if Gap and (Gap in self):
gap_index = self.index(Gap)
if gap_index >= 0:
self.GapIndex = gap_index
try:
self._gapmotif = self.Gap * self._motiflen
except TypeError: #self._motiflen was probably None
self._gapmotif = self.Gap
self.Shape = (len(self),)
#_allowed_range provides for fast sums of matching items
self._allowed_range = arange(len(self))[:,newaxis]
self.ArrayType = get_array_type(len(self))
self._complement_array = None #set in moltypes.py for standard types
def index(self, item):
"""Returns the index of a specified item.
This goes through an extra object lookup. If you _really_ need speed,
you can bind self._obj_to_index.__getitem__ directly, but this is not
recommended because the internal implementation may change."""
return self._obj_to_index[item]
def toIndices(self, data):
"""Returns sequence of indices from sequence of elements.
Raises KeyError if some of the elements were not found.
Expects data to be a sequence (e.g. list of tuple) of items that
are in the Enumeration. Returns a list containing the index of each
element in the input, in order.
e.g. for the DNA alphabet ('U','C','A','G'), the sequence 'CCAU'
would produce the result [1,1,2,0], returning the index of each
element in the input.
"""
return map(self._obj_to_index.__getitem__, data)
def isValid(self, seq):
"""Returns True if seq contains only items in self."""
try:
self.toIndices(seq)
return True
except (KeyError, TypeError):
return False
def fromIndices(self, data):
"""Returns sequence of elements from sequence of indices.
Specifically, takes as input a sequence of numbers corresponding to
elements in the Enumeration (i.e. the numbers must all be < len(self).
Returns a list of the items in the same order as the indices. Inverse
of toIndices.
e.g. for the DNA alphabet ('U','C','A','G'), the sequence [1,1,2,0]
would produce the result 'CCAU', returning the element corresponding
to each element in the input.
"""
#if it's a normal Python type, map will work
try:
return map(self.__getitem__, data)
#otherwise, it's probably an array object.
except TypeError:
try:
data = map(int, data)
except (TypeError, ValueError): #might be char array?
print "DATA", data
print "FIRST MAP:", map(str, data)
print "SECOND MAP:", map(ord, map(str, data))
data = map(ord, map(str, data))
return(map(self.__getitem__, data))
def __pow__(self, num):
"""Returns JointEnumeration with num copies of self.
A JointEnumeration is an Enumeration of tuples on the original
enumeration (although these may be mapped to a different data type,
e.g. a JointAlphabet is still an Alphabet, so its members are
fixed-length strings).
For example, a trinucleotide alphabet (or codons) would be a
JointEnumeration on the nucleotides. So RnaBases**3 is RnaCodons (except
for some additional logic for converting between tuples of one-letter
strings and the desired 3-letter strings). All subenumerations of a
JointEnumeration made by __pow__ are identical.
"""
return JointEnumeration([self]*num, MolType=self.MolType)
def __mul__(self, other):
"""Returns JointEnumeration between self and other.
Specifically, returns a JointEnumeration whose elements are (a,b) where
a is an element of the first enumeration and b is an element of the
second enumeration. For example, a JointEnumeration of 'ab' and 'cd'
would have the four elements ('a','c'),('a','d'),('b','c'),('b',d').
A JointEnumeration is an enumeration of tuples on more than one
enumeration, where the first element in each tuple comes from the
first enumeration, the second from the second enumeration, and so on.
JointEnumerations are useful as the basis for contingency tables,
transition matrices, counts of dinucleotides, etc.
"""
if self.MolType is other.MolType:
MolType = self.MolType
else:
MolType = None
return JointEnumeration([self, other], MolType=MolType)
def counts(self, a):
"""Returns array containing counts of each item in a.
For example, on the enumeration 'UCAG', the sequence 'CCUG' would
return the array [1,2,0,1] reflecting one count for the first item
in the enumeration ('U'), two counts for the second item ('C'), no
counts for the third item ('A'), and one count for the last item ('G').
The result will always be a vector of Int with length equal to
the length of the enumeration. We return Int and non an unsigned
type because it's common to subtract counts, which produces surprising
results on unit types (i.e. wrapraround to maxint) unless the type
is explicitly coerced by the user.
Sliently ignores any unrecognized indices, e.g. if your enumeration
contains 'TCAG' and you get an 'X', the 'X' will be ignored because
it has no index in the enumeration.
"""
try:
data = ravel(a)
except ValueError: #ravel failed; try coercing to array
try:
data = ravel(array(a))
except ValueError: #try mapping to string
data = ravel(array(map(str, a)))
return sum(asarray(self._allowed_range == data, Int), 1)
def _get_pairs(self):
"""Accessor for pairs, lazy evaluation."""
if not hasattr(self, '_pairs'):
self._pairs = self**2
return self._pairs
Pairs = property(_get_pairs)
def _get_triples(self):
"""Accessor for triples, lazy evaluation."""
if not hasattr(self, '_triples'):
self._triples = self**3
return self._triples
Triples = property(_get_triples)
class JointEnumeration(Enumeration):
"""Holds an enumeration composed of subenumerations. Immutable.
JointEnumeration[i] will return tuple of items on each of the constituent
alphabets. For example, a JointEnumeration between the enumerations 'ab'
and 'cd' would have four elements: ('a','c'),('a','d'),('b','c'),('b','d').
(note that if doing a JointAlphabet, these would be strings, not tuples).
Note that the two enumerations do not have to be the same, although it is
often convenient if they are (e.g. pair enumerations that underlie
substitution matrices).
"""
def __new__(cls, data=[], Gap=None, MolType=None):
"""Fills in the tuple with tuples from the enumerations in data."""
sub_enums = cls._coerce_enumerations(data)
return Enumeration.__new__(cls, cartesian_product(sub_enums), \
MolType=MolType)
def __init__(self, data=[], Gap=None, MolType=None):
"""Returns a new JointEnumeration object. See class docstring for info.
Expects a list of Enumeration objects, or objects that can be coerced
into Enumeration objects (basically, anything that can be a tuple).
Does NOT have an independent concept of a gap -- gets the gaps from the
constituent subenumerations.
"""
self.SubEnumerations = self._coerce_enumerations(data)
sub_enum_lengths = map(len, self.SubEnumerations)
#build factors for combining symbols.
curr_factor = 1
sub_enum_factors = [curr_factor]
for i in sub_enum_lengths[-1:0:-1]:
curr_factor *= i
sub_enum_factors = [curr_factor] + sub_enum_factors
self._sub_enum_factors = transpose(array([sub_enum_factors]))
try:
#figure out the gaps correctly
gaps = [i.Gap for i in self.SubEnumerations]
self.Gap = tuple(gaps)
gap_indices = array([i.GapIndex for i in self.SubEnumerations])
gap_indices *= sub_enum_factors
self.GapIndex = sum(gap_indices)
except (TypeError, AttributeError): #index not settable
self.Gap = None
super(JointEnumeration, self).__init__(self, self.Gap)
#remember to reset shape after superclass init
self.Shape = tuple(sub_enum_lengths)
def _coerce_enumerations(cls, enums):
"""Coerces putative enumerations into Enumeration objects.
For each object passed in, if it's an Enumeration object already, use
that object without translation/conversion. If it isn't, call the
Enumeration constructor on it and append the new Enumeration to the
result.
Note that this means you can construct JointEnumerations where the
subenumerations have the same data but are different objects --
in general, you probably don't want to do this (i.e. you should make
it into an Enumeration beforehand and pass n references to that
Enumeration in as a list:
a = Enumeration('abc')
j = JointEnumeration([a,a,a])
... not
a = JointEnumeration(['abc','abc','abc'])
"""
result = []
for a in enums:
if isinstance(a, Enumeration):
result.append(a)
else:
result.append(Enumeration(a))
return result
def packArrays(self, arrays):
"""Packs parallel arrays on subenums to single array on joint enum.
WARNING: must pass arrays as single object.
This method takes a single array in which each row is an array of
indices on the appropriate subenumeration. For example, you might have
arrays for the bases at the first, second, and third positions of each
codon in a gene, and want to pack them together into a single Codons
object. packArrays() allows you to do this without having to explicitly
interleave the arrays into a single sequence and then convert it back
on the JointEnumeration.
Notes:
- Expects a single array object, where the rows (first dimension)
correspond to information about the same set of data on a different
enumeration (or, as in the case of codons, on the same enumeration but
at a different position). This means that if you're constructing the
array on the fly, the number of elements you have in each enumeration
must be the same.
- Arrays must already be converted into indices -- for example, you
can't pass in raw strings as sequences, but you can pass in the data
from cogent.seqsim.Sequence objects.
- This method is the inverse of unpackArrays().
- Uses self.ArrayType to figure out the type of array to return (e.g.
the amino acids may use a character array, but you need a larger
data type to store indices on a JointEnumeration of pairs or triples of
amino acids).
"""
return sum(self._sub_enum_factors * array(arrays, self.ArrayType), axis=0)
def unpackArrays(self, a):
"""Unpacks array on joint enum to individual arrays on subenums.
Returns result as single numpy array object.
This method takes a single vector of indices on the appropriate
JointEnumeration, and returns an array where the rows are, in order,
vectors of the appropriate indices on each subenumeration. For example,
you might have a sequence on the Codons enumeration, and want to unpack
it into the corresponding sequences of the first, second, and third
position bases in each codon. unpackArrays() allows you to do this .
Notes:
- Will always return a single array object, with number of rows equal
to the number of subenumerations in self.
- Will always return a value for each enumeration for each item, e.g.
a sequence on the codon enumeration will always return three sequences
on the individual enumerations that all have the same length (packed
into a single array).
- Output will aill always use the same typecode as the input array.
"""
a = array(a)
num_enums = len(self.SubEnumerations)
result = zeros((num_enums, len(a)))
lengths = self.Shape
# count backwards through the enumeration lengths and add to array
for i in range(num_enums-1, -1, -1):
length = lengths[i]
result[i] = a % length
a /= array(length,a.dtype.char)
return result
# the following, _coerce_enumerations, is a class method because we use
# it in __new__ before we have an instance to call it on.
_coerce_enumerations = classmethod(_coerce_enumerations)
class Alphabet(Enumeration):
"""An ordered set of fixed-length strings, e.g. the 61 sense codons.
Ambiguities (e.g. N for any base in DNA) are not considered part of the
alphabet itself, although a sequence is valid on the alphabet even if
it contains ambiguities that are known to the alphabet.
A gap is considered a separate motif and is not part of the alphabet itself.
The typical use is for the Alphabet to hold nucleic acid bases, amino acids,
or codons.
The MolType, if supplied, handles ambiguities, coercion of the sequence
to the correct data type, and complementation (if appropriate).
"""
# make this exception avalable to objects calling alphabet methods.
AlphabetError = AlphabetError
def __new__(cls, motifset, Gap='-', MolType=None):
"""Returns a new Alphabet object."""
return Enumeration.__new__(cls, data=motifset, Gap=Gap, \
MolType=MolType)
def __init__(self, motifset, Gap='-', MolType=None):
"""Returns a new Alphabet object."""
super(Alphabet, self).__init__(data=motifset, Gap=Gap, \
MolType=MolType)
def getWordAlphabet(self, length):
"""Returns a new Alphabet object with items as length-n strings.
Note that the result is not a JointEnumeration object, and cannot
unpack its indices. However, the items in the result _are_ all strings.
"""
crossproduct = ['']
for a in range(length):
n = []
for c in crossproduct:
for m in self:
n.append(m+c)
crossproduct = n
return Alphabet(crossproduct, MolType=self.MolType)
def fromSequenceToArray(self, sequence):
"""Returns an array of indices corresponding to items in sequence.
Unlike toIndices() in superclass, this method returns a numpy array
object. It also breaks the seqeunce into items in the current alphabet
(e.g. breaking a raw DNA sequence into codons), which toIndices() does
not do. It also requires the sequence to be a Sequence object rather
than an arbitrary string, tuple, etc.
"""
sequence = sequence.getInMotifSize(self._motiflen)
return array(map(self.index, sequence))
def fromOrdinalsToSequence(self, data):
"""Returns a Sequence object corresponding to indices in data.
Unlike fromIndices() in superclass, this method uses the MolType to
coerce the result into a sequence of the correct class. Note that if
the MolType is not set, this method will raise an AttributeError.
"""
result = ''
return self.MolType.makeSequence(''.join(self[i] for i in data))
def fromAmbigToLikelihoods(self, motifs, dtype=Float):
"""Returns an array in which rows are motifs, columns are items in self.
Result is an array of Float in which a[i][j] indicates whether the ith
motif passed in as motifs is a symbol that matches the jth character
in self. For example, on the DNA alphabet 'TCAG', the degenerate symbol
'Y' would correspond to the row [1,1,0,0] because Y is a degenerate
symbol that encompasses T and C but not A or G.
This code is similar to code in the Profile class, and should perhaps
be merged with it (in particular, because there is nothing likelihood-
specific about the resulting match table).
"""
result = zeros([len(motifs), len(self)], dtype)
obj_to_index = self._obj_to_index
for (u, ambig_motif) in enumerate(motifs):
for motif in self.resolveAmbiguity(ambig_motif):
result[u, obj_to_index[motif]] = 1.0
return result
def getMotifLen(self):
"""Returns the length of the items in self, or None if they differ."""
return self._motiflen
def getGapMotif(self):
"""Returns the motif that self is using as a gap. Note that this will
typically be a multiple of self.Gap.
"""
return self._gapmotif
def includesGapMotif(self):
"""Returns True if self includes the gap motif, False otherwise."""
return self._gapmotif in self
def _with(self, motifset):
"""Returns a new Alphabet object with same class and moltype as self.
Will always return a new Alphabet object even if the motifset is the
same.
"""
return self.__class__(tuple(motifset), MolType=self.MolType)
def withGapMotif(self):
"""Returns an Alphabet object resembling self but including the gap.
Always returns the same object.
"""
if self.includesGapMotif():
return self
if not hasattr(self, 'Gapped'):
self.Gapped = self._with(list(self) + [self.getGapMotif()])
return self.Gapped
def getSubset(self, motif_subset, excluded=False):
"""Returns a new Alphabet object containing a subset of motifs in self.
Raises an exception if any of the items in the subset are not already
in self. Always returns a new object.
"""
if isinstance(motif_subset, dict):
motif_subset = [m for m in motif_subset if motif_subset[m]]
for m in motif_subset:
if m not in self:
raise AlphabetError(m)
if excluded:
motif_subset = [m for m in self if m not in motif_subset]
return self._with(motif_subset)
def resolveAmbiguity(self, ambig_motif):
"""Returns set of symbols corresponding to ambig_motif.
Handles multi-character symbols and screens against the set of
valid motifs, unlike the MolType version.
"""
# shortcut easy case
if ambig_motif in self._quick_motifset:
return (ambig_motif,)
# resolve each letter, and build the possible sub motifs
ambiguities = self.MolType.Ambiguities
motif_set = ['']
ALL = self.MolType.Alphabet.withGapMotif()
for character in ambig_motif:
new_motifs = []
if character == '?':
resolved = ALL
elif character == '-':
resolved = ['-']
else:
try:
resolved = ambiguities[character]
except KeyError:
raise AlphabetError(ambig_motif)
for character2 in resolved:
for motif in motif_set:
new_motifs.append(''.join([motif, character2]))
motif_set = new_motifs
# delete sub motifs that are not to be included
motif_set = [motif for motif in motif_set if motif in self._quick_motifset]
if not motif_set:
raise AlphabetError(ambig_motif)
return tuple(motif_set)
def adaptMotifProbs(self, motif_probs):
"""Prepare an array or dictionary of probabilities for use with
this alphabet by checking size and order"""
if hasattr(motif_probs, 'keys'):
sample = motif_probs.keys()[0]
if sample not in self:
raise ValueError("Can't find motif %s in alphabet" %
sample)
motif_probs = numpy.array(
[motif_probs[motif] for motif in self])
else:
if len(motif_probs) != len(self):
if len(motif_probs) != len(self):
raise ValueError("Can't match %s probs to %s alphabet" %
(len(motif_probs), len(self)))
motif_probs = numpy.asarray(motif_probs)
assert abs(sum(motif_probs)-1.0) < 0.0001, motif_probs
return motif_probs
class CharAlphabet(Alphabet):
"""Holds an alphabet whose items are single chars.
The general Alphabet can hold items of any type, but this is inconvenient
if your Alphabet is characters-only because you get back operations on
the alphabet as tuples of single-character strings instead of the strings
you probably want. Having a separate represntation for CharAlphabets
also allows certain efficiencies, such as using translation tables to
map characters and indices instead of having to extract each element
searately for remapping.
"""
def __init__(self, data=[], Gap='-', MolType=None):
"""Initializes self from items.
data should be a sequence (string, list, etc.) of characters that
are in the alphabet, e.g. 'UCAG' for RNA.
Gap should be a single character that represents the gap, e.g. '-'.
"""
super(CharAlphabet, self).__init__(data, Gap, MolType=MolType)
self._indices_to_chars, self._chars_to_indices = \
_make_translation_tables(data)
self._char_nums_to_indices = array(self._chars_to_indices,'c').view('B')
self._indices_nums_to_chars = array(self._indices_to_chars, 'c')
def fromString(self, data):
"""Returns array of indices from string containing elements.
data should be a string on the alphabet, e.g. 'ACC' for the RNA
alhabet 'UCAG' would return the array [2,1,1]. This is useful for
converting strings into arrays of small integers on the alphabet,
e.g. for reading a Sequence from a string.
This is on the Alphabet, not the Sequence, because lots of objects
(e.g. Profile, Alignment) also need to use it.
"""
return fromstring(translate(data, self._chars_to_indices), uint8)
def isValid(self, seq):
"""Returns True if seq contains only items in self."""
try:
if len(seq) == 0: #can't be invalid if empty
return True
ind = self.toIndices(seq)
return max(ind) < len(self) and min(ind) >= 0
except (TypeError, KeyError):
return False
def fromArray(self, data):
"""Returns array of indices from array containing elements.
This is useful if, instead of a string, you have an array of
characters that's been converted into a numpy array. See
fromString docstring for general behavior.
"""
return take(self._char_nums_to_indices, data.view('B'))
def toChars(self, data):
"""Converts array of indices into array of elements.
For example, on the 'UCAG' RNA alphabet, an array with the data
[0,1,1] would return the characters [U,C,C] in a byte array.
"""
return take(self._indices_nums_to_chars, data.astype('B'))
def toString(self, data, delimiter='\n'):
"""Converts array of data into string.
For example, on the 'UCAG' RNA alphabet, an array with the data
[0,1,1] would return the string 'UCC'. This is the most useful
conversion mechanism, and is used by e.g. the Sequence object to
convert the internal data back into strings for output.
"""
s = data.shape
if not s:
return ''
elif len(s) == 1:
return self.toChars(data).tostring()
else:
return delimiter.join([i.tostring() for i in self.toChars(data)])
|