File: alphabet.py

package info (click to toggle)
python-cogent 1.4.1-1.2
  • links: PTS, VCS
  • area: non-free
  • in suites: squeeze
  • size: 13,260 kB
  • ctags: 20,087
  • sloc: python: 116,163; ansic: 732; makefile: 74; sh: 9
file content (757 lines) | stat: -rw-r--r-- 32,574 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
#!/usr/bin/env python
"""
alphabet.py

Contains classes for representing alphabets, and more general ordinations that
map between a set of symbols and indices for storing the results in tables.
The provided alphabets are those encountered in biological sequences, but other
alphabets are certainly possible.

WARNING: do access the standard Alphabets directly. It is expected that you
will access them through the appropriate MolType. Until the moltype module
has been imported, the Alphabets will not know their MolType, which will
cause problems. It is often useful to create Alphabets
and/or Enumerations on the fly, however.

MolType provides services for resolving ambiguities, or providing the
correct ambiguity for recoding -- will move to its own module.
"""

from cogent.util.array import cartesian_product

import re
import string
import logging
LOG = logging.getLogger('cogent.data')
from numpy import array, sum, transpose, remainder, zeros, arange, newaxis, \
    ravel, asarray, fromstring, take, uint8, uint16, uint32, take
from string import maketrans, translate
import numpy
Float = numpy.core.numerictypes.sctype2char(float)
Int = numpy.core.numerictypes.sctype2char(int)

__author__ = "Peter Maxwell, Gavin Huttley and Rob Knight"
__copyright__ = "Copyright 2007-2009, The Cogent Project"
__credits__ = ["Peter Maxwell", "Gavin Huttley", "Rob Knight",
                    "Andrew Butterfield"]
__license__ = "GPL"
__version__ = "1.4.1"
__maintainer__ = "Gavin Huttley"
__email__ = "gavin.huttley@anu.edu.au"
__status__ = "Production"

class AlphabetError(Exception):
    pass

def get_array_type(num_elements):
    """Returns smallest array type that can contain sequence on num_elements.
    
    Used to figure out how large a data type is needed for the array in which
    elements are indices from an alphabet. If the data type is too small
    (e.g. you allocated an uint8 array, with 256 possible states (0-255), but
    your data actually have more than 256 states, e.g. tripeptide data with
    20*20*20 = 8000 states), when you assign a state larger than the data type
    can hold you'll get an unexpected result. For example, assigning state
    800 in an array that can only hold 256 different states will actually
    give you the result mod 256:
    
    >>> a = array(range(10), uint8)
    >>> a
    array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9],'B')
    >>> a[0] = 800
    >>> a
    array([32,  1,  2,  3,  4,  5,  6,  7,  8,  9],'B')
           ^^
           NOTE: element 1 is _not_ 800, but instead 32 -- nasty surprise!
    
    Getting the size of the necessary array from the Alphabet is a good
    solution to this problem.
    
    WARNING: Will not overflow if somehow you manage to feed it an alphabet
    with more than 2**32 elements, but it seems unlikely that this will
    happen very often in practice...
    """
    if num_elements <= 256:
        return uint8
    elif num_elements <= 2**16:
        return uint16
    return uint32

def _make_translation_tables(a):
    """Makes translation tables between chars and indices.
    
    Return value is a tuple containing (a) the translation table where
    s.translate(a) -> array data, i.e. mapping characters to numbers, and
    (b) the translation table where a.tostring().translate(s) -> string of
    the characters in the original alphabet (e.g. array of 0..4 converted
    to strings of UCAG...).
    
    This is useful for alphabets where the entries are all single characters
    (e.g.nucleotides or amino acids, but not codons) because we can use
    translate() on the input string to make the array of values we need instead
    of having to convert each character into a Python object and look it up in
    some mapping. Using translate() can be thousands of times faster, so it's
    almost always worth it if you have a choice.
    """
    indices = ''.join(map(chr, range(len(a))))
    chars = ''.join(a)
    return maketrans(indices, chars), maketrans(chars, indices)

def _make_complement_array(a, complements):
    """Makes translation array between item indices and their complements."""
    comps = [complements.get(i, i) for i in a]
    return array(map(a.index, comps))

class Enumeration(tuple):
    """An ordered set of objects, e.g. a list of taxon labels or sequence ids.
    
    An Enumeration maps items to indices, and vice versa.
    Immutable. Must initialize with a sequence of (hashable) objects, in order.
    
    This is the base class for Alphabets. An Alphabet is a special case of
    Enumeration in which all the objects are strings of the same length.
    
    Stored as a tuple, but remember that if the elements in the tuple are
    mutable you can still mutate them in-place. Don't do this if you want
    your enumeration to work in a predictable fashion.
    
    Optionally takes a Gap parameter that defines the standard gap that will
    be used for output or for operations that act on gaps. Typically, this
    will be '-' or None, depending on the application.
    """
    
    def __new__(cls, data=[], Gap=None, MolType=None):
        """Returns a new Enumeration object.
        
        data can be any sequence that can be passed to the tuple() constructor.
        
        Takes Gap as an argument but ignores it (handled in __init__).
        """
        return tuple.__new__(cls,data)
    
    def __init__(self, data=[], Gap=None, MolType=None):
        """Initializes self from data, and optionally a gap.
        
        An Enumeration object mainly provides the mapping between objects and
        order so that you can convert symbols on an enumeration into numeric
        indices (e.g. recoding UCAG as the numbers 0,1,2,3, or recoding
        the set of species ['Human', 'Mouse', 'Fly'] as indices 0, 1 and 2
        in a matrix.
        
        Properties:
        
        _obj_to_index: dict mapping the objects onto indices for fast lookup.
        
        index: provides the index of an object.
        
        __getitem__: provides the object at a specified index.
        
        Shape: shape of the data, typically an n x 1 array.
        
        _allowed_range: stores the range in which the enumeration elements occur
        (used for summing items that match a particular symbol).
        
        Gap: item to be used as a gap -- should typically appear in data too.
        
        ArrayType: type of array needed to store all the symbols in the
        enumeration, e.g. if your enumeration has > 256 objects in it you need
        to use uint16, not uint8, because it will wrap around otherwise. Also
        constrains the types to unsigned integer types so you don't
        accidentally use negative numbers as indices (this is very bad when
        doing indexed lookups).
        """
        self.MolType = MolType
        
        #check if motif lengths are homogeneous -- if so, set length
        try:
            motif_lengths = frozenset(map(len, self))
            if len(motif_lengths) > 1:
                self._motiflen = None
            else:
                self._motiflen = list(motif_lengths)[0]
        except TypeError:       #some motifs don't support __len__, e.g. ints
            self._motiflen = None
        
        #make the quick_motifset for fast lookups; check for duplicates.
        self._quick_motifset = frozenset(self)
        if len(self._quick_motifset) != len(self):
            #got duplicates: show user what they sent in
            raise TypeError, 'Alphabet initialized with duplicate values:\n' +\
                str(self)
        self._obj_to_index = dict(zip(self, range(len(self))))
        #handle gaps
        self.Gap = Gap
        if Gap and (Gap in self):
            gap_index = self.index(Gap)
            if gap_index >= 0:
                self.GapIndex = gap_index
        try:
            self._gapmotif = self.Gap * self._motiflen
        except TypeError:       #self._motiflen was probably None
            self._gapmotif = self.Gap
        
        self.Shape = (len(self),)
        #_allowed_range provides for fast sums of matching items
        self._allowed_range = arange(len(self))[:,newaxis]
        self.ArrayType = get_array_type(len(self))
        self._complement_array = None   #set in moltypes.py for standard types
    
    def index(self, item):
        """Returns the index of a specified item.
        
        This goes through an extra object lookup. If you _really_ need speed,
        you can bind self._obj_to_index.__getitem__ directly, but this is not
        recommended because the internal implementation may change."""
        return self._obj_to_index[item]
    
    def toIndices(self, data):
        """Returns sequence of indices from sequence of elements.
        
        Raises KeyError if some of the elements were not found.
        
        Expects data to be a sequence (e.g. list of tuple) of items that
        are in the Enumeration. Returns a list containing the index of each
        element in the input, in order.
        
        e.g. for the DNA alphabet ('U','C','A','G'), the sequence 'CCAU'
        would produce the result [1,1,2,0], returning the index of each
        element in the input.
        """
        return map(self._obj_to_index.__getitem__, data)
    
    def isValid(self, seq):
        """Returns True if seq contains only items in self."""
        try:
            self.toIndices(seq)
            return True
        except (KeyError, TypeError):
            return False
    
    def fromIndices(self, data):
        """Returns sequence of elements from sequence of indices.
        
        Specifically, takes as input a sequence of numbers corresponding to
        elements in the Enumeration (i.e. the numbers must all be < len(self).
        Returns a list of the items in the same order as the indices. Inverse
        of toIndices.
        
        e.g. for the DNA alphabet ('U','C','A','G'), the sequence [1,1,2,0]
        would produce the result 'CCAU', returning the element corresponding
        to each element in the input.
        
        """
        #if it's a normal Python type, map will work
        try:
            return map(self.__getitem__, data)
        #otherwise, it's probably an array object.
        except TypeError:
            try:
                data = map(int, data)
            except (TypeError, ValueError): #might be char array?
                print "DATA", data
                print "FIRST MAP:", map(str, data)
                print "SECOND MAP:", map(ord, map(str, data))
                data = map(ord, map(str, data))
            return(map(self.__getitem__, data))
    
    def __pow__(self, num):
        """Returns JointEnumeration with num copies of self.
        
        A JointEnumeration is an Enumeration of tuples on the original
        enumeration (although these may be mapped to a different data type,
        e.g. a JointAlphabet is still an Alphabet, so its members are
        fixed-length strings).
        
        For example, a trinucleotide alphabet (or codons) would be a
        JointEnumeration on the nucleotides. So RnaBases**3 is RnaCodons (except
        for some additional logic for converting between tuples of one-letter
        strings and the desired 3-letter strings). All subenumerations of a
        JointEnumeration made by __pow__ are identical.
        """
        return JointEnumeration([self]*num, MolType=self.MolType)
    
    def __mul__(self, other):
        """Returns JointEnumeration between self and other.
        
        Specifically, returns a JointEnumeration whose elements are (a,b) where
        a is an element of the first enumeration and b is an element of the
        second enumeration. For example, a JointEnumeration of 'ab' and 'cd'
        would have the four elements ('a','c'),('a','d'),('b','c'),('b',d').
        
        A JointEnumeration is an enumeration of tuples on more than one
        enumeration, where the first element in each tuple comes from the
        first enumeration, the second from the second enumeration, and so on.
        JointEnumerations are useful as the basis for contingency tables,
        transition matrices, counts of dinucleotides, etc.
        """
        if self.MolType is other.MolType:
            MolType = self.MolType
        else:
            MolType = None
        return JointEnumeration([self, other], MolType=MolType)
    
    def counts(self, a):
        """Returns array containing counts of each item in a.
        
        For example, on the enumeration 'UCAG', the sequence 'CCUG' would
        return the array [1,2,0,1] reflecting one count for the first item
        in the enumeration ('U'), two counts for the second item ('C'), no
        counts for the third item ('A'), and one count for the last item ('G').
        
        The result will always be a vector of Int with length equal to
        the length of the enumeration. We return Int and non an unsigned
        type because it's common to subtract counts, which produces surprising
        results on unit types (i.e. wrapraround to maxint) unless the type
        is explicitly coerced by the user.
        
        Sliently ignores any unrecognized indices, e.g. if your enumeration
        contains 'TCAG' and you get an 'X', the 'X' will be ignored because
        it has no index in the enumeration.
        """
        try:
            data = ravel(a)
        except ValueError:  #ravel failed; try coercing to array
            try:
                data = ravel(array(a))
            except ValueError: #try mapping to string
                data = ravel(array(map(str, a)))
        return sum(asarray(self._allowed_range == data, Int), 1)
    
    def _get_pairs(self):
        """Accessor for pairs, lazy evaluation."""
        if not hasattr(self, '_pairs'):
            self._pairs = self**2
        return self._pairs
    
    Pairs = property(_get_pairs)
    
    def _get_triples(self):
        """Accessor for triples, lazy evaluation."""
        if not hasattr(self, '_triples'):
            self._triples = self**3
        return self._triples
    
    Triples = property(_get_triples)

class JointEnumeration(Enumeration):
    """Holds an enumeration composed of subenumerations. Immutable.
    
    JointEnumeration[i] will return tuple of items on each of the constituent
    alphabets. For example, a JointEnumeration between the enumerations 'ab'
    and 'cd' would have four elements: ('a','c'),('a','d'),('b','c'),('b','d').
    (note that if doing a JointAlphabet, these would be strings, not tuples).
    Note that the two enumerations do not have to be the same, although it is
    often convenient if they are (e.g. pair enumerations that underlie
    substitution matrices).
    """
    def __new__(cls, data=[], Gap=None, MolType=None):
        """Fills in the tuple with tuples from the enumerations in data."""
        sub_enums = cls._coerce_enumerations(data)
        return Enumeration.__new__(cls, cartesian_product(sub_enums), \
            MolType=MolType)
    
    def __init__(self, data=[], Gap=None, MolType=None):
        """Returns a new JointEnumeration object. See class docstring for info.
        
        Expects a list of Enumeration objects, or objects that can be coerced
        into Enumeration objects (basically, anything that can be a tuple).
        
        Does NOT have an independent concept of a gap -- gets the gaps from the
        constituent subenumerations.
        """
        self.SubEnumerations = self._coerce_enumerations(data)
        sub_enum_lengths = map(len, self.SubEnumerations)
        #build factors for combining symbols.
        curr_factor = 1
        sub_enum_factors = [curr_factor]
        for i in sub_enum_lengths[-1:0:-1]:
            curr_factor *= i
            sub_enum_factors = [curr_factor] + sub_enum_factors
        self._sub_enum_factors = transpose(array([sub_enum_factors]))
        
        try:
            #figure out the gaps correctly
            gaps = [i.Gap for i in self.SubEnumerations]
            self.Gap = tuple(gaps)
            gap_indices = array([i.GapIndex for i in self.SubEnumerations])
            gap_indices *= sub_enum_factors
            self.GapIndex = sum(gap_indices)
        except (TypeError, AttributeError): #index not settable
            self.Gap = None
        
        super(JointEnumeration, self).__init__(self, self.Gap)
        #remember to reset shape after superclass init
        self.Shape = tuple(sub_enum_lengths)
    
    def _coerce_enumerations(cls, enums):
        """Coerces putative enumerations into Enumeration objects.
        
        For each object passed in, if it's an Enumeration object already, use
        that object without translation/conversion. If it isn't, call the
        Enumeration constructor on it and append the new Enumeration to the
        result.
        
        Note that this means you can construct JointEnumerations where the
        subenumerations have the same data but are different objects --
        in general, you probably don't want to do this (i.e. you should make
        it into an Enumeration beforehand and pass n references to that
        Enumeration in as a list:
            a = Enumeration('abc')
            j = JointEnumeration([a,a,a])
        ... not
            a = JointEnumeration(['abc','abc','abc'])
        """
        result = []
        for a in enums:
            if isinstance(a, Enumeration):
                result.append(a)
            else:
                result.append(Enumeration(a))
        return result
    
    def packArrays(self, arrays):
        """Packs parallel arrays on subenums to single array on joint enum.
        
        WARNING: must pass arrays as single object.
        
        This method takes a single array in which each row is an array of
        indices on the appropriate subenumeration. For example, you might have
        arrays for the bases at the first, second, and third positions of each
        codon in a gene, and want to pack them together into a single Codons
        object. packArrays() allows you to do this without having to explicitly
        interleave the arrays into a single sequence and then convert it back
        on the JointEnumeration.
        
        Notes:
        
        - Expects a single array object, where the rows (first dimension)
        correspond to information about the same set of data on a different
        enumeration (or, as in the case of codons, on the same enumeration but
        at a different position). This means that if you're constructing the
        array on the fly, the number of elements you have in each enumeration
        must be the same.
        
        - Arrays must already be converted into indices -- for example, you
        can't pass in raw strings as sequences, but you can pass in the data
        from cogent.seqsim.Sequence objects.
        
        - This method is the inverse of unpackArrays().
        
        - Uses self.ArrayType to figure out the type of array to return (e.g.
        the amino acids may use a character array, but you need a larger
        data type to store indices on a JointEnumeration of pairs or triples of
        amino acids).
        """
        return sum(self._sub_enum_factors * array(arrays, self.ArrayType), axis=0)
    
    def unpackArrays(self, a):
        """Unpacks array on joint enum to individual arrays on subenums.
        
        Returns result as single numpy array object.
        
        This method takes a single vector of indices on the appropriate
        JointEnumeration, and returns an array where the rows are, in order,
        vectors of the appropriate indices on each subenumeration. For example,
        you might have a sequence on the Codons enumeration, and want to unpack
        it into the corresponding sequences of the first, second, and third
        position bases in each codon. unpackArrays() allows you to do this .
        
        Notes:
        
        - Will always return a single array object, with number of rows equal
        to the number of subenumerations in self.
        
        - Will always return a value for each enumeration for each item, e.g.
        a sequence on the codon enumeration will always return three sequences
        on the individual enumerations that all have the same length (packed
        into a single array).
        
        - Output will aill always use the same typecode as the input array.
        """
        a = array(a)
        num_enums = len(self.SubEnumerations)
        result = zeros((num_enums, len(a)))
        lengths = self.Shape
        # count backwards through the enumeration lengths and add to array
        for i in range(num_enums-1, -1, -1):
            length = lengths[i]
            result[i] = a % length
            a /= array(length,a.dtype.char)
        return result
    
    # the following, _coerce_enumerations, is a class method because we use
    # it in __new__ before we have an instance to call it on.
    _coerce_enumerations = classmethod(_coerce_enumerations)

class Alphabet(Enumeration):
    """An ordered set of fixed-length strings, e.g. the 61 sense codons.
    
    Ambiguities (e.g. N for any base in DNA) are not considered part of the
    alphabet itself, although a sequence is valid on the alphabet even if
    it contains ambiguities that are known to the alphabet.
    A gap is considered a separate motif and is not part of the alphabet itself.
    
    The typical use is for the Alphabet to hold nucleic acid bases, amino acids,
    or codons.
    
    The MolType, if supplied, handles ambiguities, coercion of the sequence
    to the correct data type, and complementation (if appropriate).
    """
    
    # make this exception avalable to objects calling alphabet methods.
    AlphabetError = AlphabetError
    
    def __new__(cls, motifset, Gap='-', MolType=None):
        """Returns a new Alphabet object."""
        return Enumeration.__new__(cls, data=motifset, Gap=Gap, \
            MolType=MolType)
    
    def __init__(self, motifset, Gap='-', MolType=None):
        """Returns a new Alphabet object."""
        super(Alphabet, self).__init__(data=motifset, Gap=Gap, \
            MolType=MolType)
    
    def getWordAlphabet(self, length):
        """Returns a new Alphabet object with items as length-n strings.
        
        Note that the result is not a JointEnumeration object, and cannot
        unpack its indices. However, the items in the result _are_ all strings.
        """
        crossproduct = ['']
        for a in range(length):
            n = []
            for c in crossproduct:
                for m in self:
                    n.append(m+c)
            crossproduct = n
        return Alphabet(crossproduct, MolType=self.MolType)
    
    def fromSequenceToArray(self, sequence):
        """Returns an array of indices corresponding to items in sequence.
        
        Unlike toIndices() in superclass, this method returns a numpy array
        object. It also breaks the seqeunce into items in the current alphabet
        (e.g. breaking a raw DNA sequence into codons), which toIndices() does
        not do. It also requires the sequence to be a Sequence object rather
        than an arbitrary string, tuple, etc.
        """
        sequence = sequence.getInMotifSize(self._motiflen)
        return array(map(self.index, sequence))
    
    def fromOrdinalsToSequence(self, data):
        """Returns a Sequence object corresponding to indices in data.
        
        Unlike fromIndices() in superclass, this method uses the MolType to
        coerce the result into a sequence of the correct class. Note that if
        the MolType is not set, this method will raise an AttributeError.
        """
        result = ''
        return self.MolType.makeSequence(''.join(self[i] for i in data))
    
    def fromAmbigToLikelihoods(self, motifs, dtype=Float):
        """Returns an array in which rows are motifs, columns are items in self.
        
        Result is an array of Float in which a[i][j] indicates whether the ith
        motif passed in as motifs is a symbol that matches the jth character
        in self. For example, on the DNA alphabet 'TCAG', the degenerate symbol
        'Y' would correspond to the row [1,1,0,0] because Y is a degenerate
        symbol that encompasses T and C but not A or G.
        
        This code is similar to code in the Profile class, and should perhaps
        be merged with it (in particular, because there is nothing likelihood-
        specific about the resulting match table).
        """
        result = zeros([len(motifs), len(self)], dtype)
        obj_to_index = self._obj_to_index
        for (u, ambig_motif) in enumerate(motifs):
            for motif in self.resolveAmbiguity(ambig_motif):
                result[u, obj_to_index[motif]] = 1.0
        return result
    
    def getMotifLen(self):
        """Returns the length of the items in self, or None if they differ."""
        return self._motiflen
    
    def getGapMotif(self):
        """Returns the motif that self is using as a gap. Note that this will
        typically be a multiple of self.Gap.
        """
        return self._gapmotif
    
    def includesGapMotif(self):
        """Returns True if self includes the gap motif, False otherwise."""
        return self._gapmotif in self
    
    def _with(self, motifset):
        """Returns a new Alphabet object with same class and moltype as self.
        
        Will always return a new Alphabet object even if the motifset is the
        same.
        """
        return self.__class__(tuple(motifset), MolType=self.MolType)
    
    def withGapMotif(self):
        """Returns an Alphabet object resembling self but including the gap.
        
        Always returns the same object.
        """
        if self.includesGapMotif():
            return self
        if not hasattr(self, 'Gapped'):
            self.Gapped = self._with(list(self) + [self.getGapMotif()])
        return self.Gapped
    
    def getSubset(self, motif_subset, excluded=False):
        """Returns a new Alphabet object containing a subset of motifs in self.
        
        Raises an exception if any of the items in the subset are not already
        in self. Always returns a new object.
        """
        if isinstance(motif_subset, dict):
            motif_subset = [m for m in motif_subset if motif_subset[m]]
        for m in motif_subset:
            if m not in self:
                raise AlphabetError(m)
        if excluded:
            motif_subset = [m for m in self if m not in motif_subset]
        return self._with(motif_subset)
    
    def resolveAmbiguity(self, ambig_motif):
        """Returns set of symbols corresponding to ambig_motif.
        
        Handles multi-character symbols and screens against the set of
        valid motifs, unlike the MolType version.
        """
        # shortcut easy case
        if ambig_motif in self._quick_motifset:
            return (ambig_motif,)
        
        # resolve each letter, and build the possible sub motifs
        ambiguities = self.MolType.Ambiguities
        motif_set = ['']
        ALL = self.MolType.Alphabet.withGapMotif()
        for character in ambig_motif:
            new_motifs = []
            if character == '?':
                resolved = ALL
            elif character == '-':
                resolved = ['-']
            else:
                try:
                    resolved = ambiguities[character]
                except KeyError:
                    raise AlphabetError(ambig_motif)
            for character2 in resolved:
                for motif in motif_set:
                    new_motifs.append(''.join([motif, character2]))
            
            motif_set = new_motifs
        
        # delete sub motifs that are not to be included
        motif_set = [motif for motif in motif_set if motif in self._quick_motifset]
        
        if not motif_set:
            raise AlphabetError(ambig_motif)
        
        return tuple(motif_set)
    
    def adaptMotifProbs(self, motif_probs):
        """Prepare an array or dictionary of probabilities for use with
        this alphabet by checking size and order"""
        if hasattr(motif_probs, 'keys'):
            sample = motif_probs.keys()[0]
            if sample not in self:
                raise ValueError("Can't find motif %s in alphabet" %
                                sample)
            motif_probs = numpy.array(
                    [motif_probs[motif] for motif in self])
        else:
            if len(motif_probs) != len(self):
                if len(motif_probs) != len(self):
                    raise ValueError("Can't match %s probs to %s alphabet" %
                            (len(motif_probs), len(self)))
            motif_probs = numpy.asarray(motif_probs)
        assert abs(sum(motif_probs)-1.0) < 0.0001, motif_probs
        return motif_probs

class CharAlphabet(Alphabet):
    """Holds an alphabet whose items are single chars.
    
    The general Alphabet can hold items of any type, but this is inconvenient
    if your Alphabet is characters-only because you get back operations on
    the alphabet as tuples of single-character strings instead of the strings
    you probably want. Having a separate represntation for CharAlphabets
    also allows certain efficiencies, such as using translation tables to
    map characters and indices instead of having to extract each element
    searately for remapping.
    """
    def __init__(self, data=[], Gap='-', MolType=None):
        """Initializes self from items.
        
        data should be a sequence (string, list, etc.) of characters that
        are in the alphabet, e.g. 'UCAG' for RNA.
        
        Gap should be a single character that represents the gap, e.g. '-'.
        """
        super(CharAlphabet, self).__init__(data, Gap, MolType=MolType)
        self._indices_to_chars, self._chars_to_indices = \
            _make_translation_tables(data)
        self._char_nums_to_indices = array(self._chars_to_indices,'c').view('B')
        self._indices_nums_to_chars = array(self._indices_to_chars, 'c')
    
    def fromString(self, data):
        """Returns array of indices from string containing elements.
        
        data should be a string on the alphabet, e.g. 'ACC' for the RNA
        alhabet 'UCAG' would return the array [2,1,1]. This is useful for
        converting strings into arrays of small integers on the alphabet,
        e.g. for reading a Sequence from a string.
        
        This is on the Alphabet, not the Sequence, because lots of objects
        (e.g. Profile, Alignment) also need to use it.
        """
        return fromstring(translate(data, self._chars_to_indices), uint8)
    
    def isValid(self, seq):
        """Returns True if seq contains only items in self."""
        try:
            if len(seq) == 0:   #can't be invalid if empty
                return True
            ind = self.toIndices(seq)
            return max(ind) < len(self) and min(ind) >= 0
        except (TypeError, KeyError):
            return False
    
    def fromArray(self, data):
        """Returns array of indices from array containing elements.
        
        This is useful if, instead of a string, you have an array of
        characters that's been converted into a numpy array. See
        fromString docstring for general behavior.
        """
        return take(self._char_nums_to_indices, data.view('B'))
    
    def toChars(self, data):
        """Converts array of indices into array of elements.
        
        For example, on the 'UCAG' RNA alphabet, an array with the data
        [0,1,1] would return the characters [U,C,C] in a byte array.
        """
        return take(self._indices_nums_to_chars, data.astype('B'))
    
    def toString(self, data, delimiter='\n'):
        """Converts array of data into string.
        
        For example, on the 'UCAG' RNA alphabet, an array with the data
        [0,1,1] would return the string 'UCC'. This is the most useful
        conversion mechanism, and is used by e.g. the Sequence object to
        convert the internal data back into strings for output.
        """
        s = data.shape
        if not s:
            return ''
        elif len(s) == 1:
            return self.toChars(data).tostring()
        else:
            return delimiter.join([i.tostring() for i in self.toChars(data)])