1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
|
#!/usr/bin/env python
"""Alignments and Sequences are _Annotatables
_Annotatables hold a list of Maps.
Maps can be Features, Variables or AlignedSequences.
Maps have a list of Spans.
Also provides Range and Point classes for dealing with parts of sequences.
Span is a region with a start, an end, and a direction. Range is an ordered
collection of Spans (note: Range does _not_ support the list interface, but
you can always access Range.Spans directly). Map is like a Range but is
immutable and is able to be nested, i.e. Maps can be defined relative to
other Maps.
Implementation Notes
Span and Range behave much like Python's slices: a Span contains the element
after its Start but does not contain the element after its End. It may help to
think of the Span indices occurring _between_ the list elements:
a b c d e
| | | | | |
0 1 2 3 4 5
...so that a Span whose Start is its End contains no elements (e.g. 2:2), and
a Span whose End is 2 more than its start contains 2 elements (e.g. 2:4 has c
and d), etc. Similarly, Span(0,2) does _not_ overlap Span(2,3), since the
former contains a and b while the latter contains c.
A Point is a Span whose Start and End refer to the same object, i.e. the same
position in the sequence. A Point occurs between elements in the sequence,
and so does not contain any elements itself.
WARNING: this differs from the way e.g. NCBI handles sequence indices, where
the sequence is 1-based, a single index is treated as containing one element,
the point 3 contains exactly one element, 3, rather than no elements, and a
range from 2:4 contains 2, 3 and 4, _not_ just 2 and 3.
"""
from cogent.util.misc import FunctionWrapper, ClassChecker, ConstrainedList, \
iterable
from itertools import chain
from string import strip
from bisect import bisect_right, bisect_left
import copy
__author__ = "Rob Knight"
__copyright__ = "Copyright 2007-2009, The Cogent Project"
__credits__ = ["Rob Knight", "Peter Maxwell", "Matthew Wakefield",
"Gavin Huttley"]
__license__ = "GPL"
__version__ = "1.4.1"
__maintainer__ = "Rob Knight"
__email__ = "rob@spot.colorado.edu"
__status__ = "Prototype"
def _norm_index(i, length, default):
"""For converting s[:3] to s[0:3], s[-1] to s[len(s)-1] and s[0:lots] to s[0:len(s)]"""
if i is None:
i = default
elif i < 0:
i += length
return min(max(i,0),length)
def _norm_slice(index, length):
"""_norm_slice(slice(1, -2, 3), 10) -> (1,8,3)"""
if isinstance(index, slice):
start = _norm_index(index.start, length, 0)
end = _norm_index(index.stop, length, length)
return (start, end, index.step)
else:
start = index
if start < 0: start += length
if start >= length: raise IndexError(index)
return (start, start+1, 1)
def as_map(slice, length):
"""Take anything that might be used as a subscript: Integer, Slice,
or Map, and return a Map."""
if isinstance(slice, (list, tuple)):
spans = []
for i in slice:
spans.extend(as_map(i, length).spans)
map = Map(spans=spans, parent_length=length)
elif isinstance(slice, Map):
map = slice
# reasons for failure when the following is not commented out
# should be checked further
#assert map.parent_length == length, (map, length)
else:
(lo, hi, step) = _norm_slice(slice, length)
assert (step or 1) == 1
map = Map([(lo, hi)], parent_length=length)
return map
class SpanI(object):
"""Abstract interface for Span and Range objects.
Required properties: Start, End (must both be numbers)
"""
__slots__ = [] #override in subclass
def __contains__(self, other):
"""Returns True if other entirely contained in self."""
raise NotImplementedError
def overlaps(self, other):
"""Returns True if any positions in self are also in other."""
raise NotImplementedError
def reverse(self):
"""Reverses self."""
raise NotImplementedError
def __iter__(self):
"""Iterates over indices contained in self."""
raise NotImplementedError
def __str__(self):
"""Returns string representation of self."""
return '(%s,%s)' % (self.Start, self.End)
def __len__(self):
"""Returns length of self."""
raise NotImplementedError
def __cmp__(self):
"""Compares indices of self with indices of other."""
raise NotImplementedError
def startsBefore(self, other):
"""Returns True if self starts before other or other.Start."""
try:
return self.Start < other.Start
except AttributeError:
return self.Start < other
def startsAfter(self, other):
"""Returns True if self starts after other or after other.Start."""
try:
return self.Start > other.Start
except AttributeError:
return self.Start > other
def startsAt(self, other):
"""Returns True if self starts at the same place as other."""
try:
return self.Start == other.Start
except AttributeError:
return self.Start == other
def startsInside(self, other):
"""Returns True if self's start in other or equal to other."""
try:
return self.Start in other
except (AttributeError, TypeError): #count other as empty span
return False
def endsBefore(self, other):
"""Returns True if self ends before other or other.End."""
try:
return self.End < other.End
except AttributeError:
return self.End < other
def endsAfter(self, other):
"""Returns True if self ends after other or after other.End."""
try:
return self.End > other.End
except AttributeError:
return self.End > other
def endsAt(self, other):
"""Returns True if self ends at the same place as other."""
try:
return self.End == other.End
except AttributeError:
return self.End == other
def endsInside(self, other):
"""Returns True if self's end in other or equal to other."""
try:
return self.End in other
except (AttributeError, TypeError): #count other as empty span
return False
class Span(SpanI):
"""A contiguous location, not much more than (start, end)
Spans don't even know what map they are on. The only smarts the class
has is the ability to slice correctly. Spans do not expect to be
reverse-sliced (sl[5,3]) and treat positions as relative to themselves,
not an underlying sequence (eg sl[:n] == sl[0:n]), so this slicing is
very different to feature slicing.
Spans may optionaly have a value, which gets preserved when they are remapped etc."""
lost = False
__slots__ = ( 'tidy_start', 'tidy_end', 'length', 'value',
'Start', 'End', 'Reverse')
def __init__(self, Start, End=None, tidy_start=False, tidy_end=False,
value=None, Reverse=False):
self._new_init(Start, End, Reverse)
self.tidy_start = tidy_start
self.tidy_end = tidy_end
self.value = value
self.length = self.End - self.Start
assert self.length >= 0
def _new_init(self, Start, End=None, Reverse=False):
"""Returns a new Span object, with Start, End, and Reverse properties.
If End is not supplied, it is set to Start + 1 (providing a 1-element
range).
Reverse defaults to False.
This should replace the current __init__ method when deprecated vars
are removed.
"""
#special handling in case we were passed another Span
if isinstance(Start, Span):
assert End is None
self.Start, self.End, self.Reverse = Start.Start, Start.End, \
Start.Reverse
else:
#reverse start and end so that start is always first
if End is None:
End = Start + 1
elif Start > End:
Start, End = End, Start
self.Start = Start
self.End = End
self.Reverse = Reverse
def __setstate__(self, args):
self.__init__(*args)
def __getstate__(self):
return (self.Start, self.End, self.tidy_start, self.tidy_end, \
self.value, self.Reverse)
def __repr__(self):
(start, end) = (self.Start, self.End)
if self.Reverse:
(end, start) = (start, end)
return '%s:%s' % (start, end)
def reversed(self):
return self.__class__(self.Start, self.End, self.tidy_end, self.tidy_start, self.value, Reverse=not self.Reverse)
def __getitem__(self, slice):
start,end,step = _norm_slice(slice, self.length)
assert (step or 1) == 1, slice
assert start <= end, slice
tidy_start = self.tidy_start and start==0
tidy_end = self.tidy_end and end == self.length
if self.Reverse:
(Start, End, Reverse) = (self.End-end, self.End-start, True)
else:
(Start, End, Reverse) = (self.Start+start, self.Start+end, False)
return type(self)(Start, End, tidy_start, tidy_end, self.value, Reverse)
def __mul__(self, scale):
return Span(self.Start * scale, self.End * scale,
self.tidy_start, self.tidy_end, self.value, self.Reverse)
def __div__(self, scale):
assert not self.Start % scale or self.End % scale
return Span(self.Start // scale, self.End // scale,
self.tidy_start, self.tidy_end, self.value, self.Reverse)
def remapWith(self, map):
"""The list of spans corresponding to this span on its grandparent, ie:
C is a span of a feature on B which itself is a feature on A, so to
place C on A return that part of B (map) covered by C (self)"""
(offsets, spans) = (map.offsets, map.spans)
map_length = offsets[-1] + spans[-1].length
# don't try to remap any non-corresponding end region(s)
# this won't matter if all spans lie properly within their
# parent maps, but that might not be true of Display slices.
(zlo, zhi) = (max(0, self.Start), min(map_length, self.End))
# Find the right span(s) of the map
first = bisect_right(offsets, zlo) - 1
last = bisect_left(offsets, zhi, first) -1
result= spans[first:last+1]
# Cut off something at either end to get
# the same position and length as 'self'
if result:
end_of_last = offsets[last]+spans[last].length
if end_of_last > zhi:
result[-1] = result[-1][:result[-1].length-(end_of_last-zhi)]
if zlo > offsets[first]:
result[0] = result[0][zlo-offsets[first]:]
# May need to add a bit at either end if the span didn't lie entirely
# within its parent map (eg: Display slice, inverse of feature map).
if self.Start < 0:
result.insert(0, LostSpan(-self.Start))
if self.End > map_length:
result.append(LostSpan(self.End-map_length))
# If the ends of self are meaningful then so are the new ends,
# but not any new internal breaks.
if result:
if self.tidy_start:
result[0].tidy_start = True
if self.tidy_end:
result[-1].tidy_end = True
# Deal with case where self is a reverse slice.
if self.Reverse:
result = [part.reversed() for part in result]
result.reverse()
if self.value is not None:
result = [copy.copy(s) for s in result]
for s in result: s.value = self.value
return result
def __contains__(self, other):
"""Returns True if other completely contained in self.
other must either be a number or have Start and End properties.
"""
try:
return other.Start >= self.Start and other.End <= self.End
except AttributeError:
#other is scalar: must be _less_ than self.End,
#for the same reason that 3 is not in range(3).
return other >= self.Start and other < self.End
def overlaps(self, other):
"""Returns True if any positions in self are also in other."""
#remember to subtract 1 from the Ends, since self.End isn't really
#in self...
try:
return (self.Start in other) or (other.Start in self)
except AttributeError: #other was probably a number?
return other in self
def reverse(self):
"""Reverses self."""
self.Reverse = not self.Reverse
def reversedRelativeTo(self, length):
"""Returns a new span with positions adjusted relative to length. For
use in reverse complementing of nucleic acids"""
# if reverse complementing, the start becomes the length minus the end
# position
start = length - self.End
assert start >= 0
end = start + self.length
return self.__class__(start, end, value = self.value,
Reverse = not self.Reverse)
def __iter__(self):
"""Iterates over indices contained in self.
NOTE: to make sure that the same items are contained whether going
through the range in forward or reverse, need to adjust the indices
by 1 if going backwards.
"""
if self.Reverse:
return iter(xrange(self.End-1, self.Start-1, -1))
else:
return iter(xrange(self.Start, self.End, 1))
def __str__(self):
"""Returns string representation of self."""
return '(%s,%s,%s)' % (self.Start, self.End, bool(self.Reverse))
def __len__(self):
"""Returns length of self."""
return self.End - self.Start
def __cmp__(self, other):
"""Compares indices of self with indices of other."""
if hasattr(other, 'Start') and hasattr(other, 'End'):
return cmp(self.Start, other.Start) or cmp(self.End, other.End) \
or cmp(self.Reverse, other.Reverse)
else:
return cmp(type(self), type(other))
class _LostSpan(object):
"""A placeholder span which doesn't exist in the underlying sequence"""
__slots__ = ['length', 'value']
lost = True
terminal = False
def __init__(self, length, value=None):
self.length = length
self.value = value
def __len__(self):
return self.length
def __setstate__(self, args):
self.__init__(*args)
def __getstate__(self):
return (self.length, self.value)
def __repr__(self):
return '-%s-' % (self.length)
def where(self, index):
return None
def reversed(self):
return self
def __getitem__(self, slice):
(start,end,step) = _norm_slice(slice, self.length)
assert (step or 1) == 1, slice
return self.__class__(abs(end-start), self.value)
def __mul__(self, scale):
return LostSpan(self.length * scale, self.value)
def __div__(self, scale):
assert not self.length % 3
return LostSpan(self.length // scale, self.value)
def remapWith(self, map):
return [self]
def reversedRelativeTo(self, length):
return self
# Save memory by only making one of each small gap
_lost_span_cache = {}
def LostSpan(length, value=None):
global _lost_span_cache
if value is None and length < 1000:
if length not in _lost_span_cache:
_lost_span_cache[length] = _LostSpan(length, value)
return _lost_span_cache[length]
else:
return _LostSpan(length, value)
class TerminalPadding(_LostSpan):
terminal = True
def __repr__(self):
return '?%s?' % (self.length)
class Map(object):
"""A map holds a list of spans. """
def __init__(self, locations=None, spans=None, tidy=False,
parent_length=None, termini_unknown=False):
assert parent_length is not None
if spans is None:
spans = []
for (start, end) in locations:
diff = 0
reverse = start > end
if max(start, end) < 0 or min(start, end) > parent_length:
raise RuntimeError("located outside sequence: %s" % \
str((start, end, parent_length)))
elif max(start, end) < 0:
diff = min(start, end)
start = [start, 0][start < 0]
end = [end, 0][end < 0]
elif min(start, end) > parent_length:
diff = max(start, end) - parent_length
start = [start, parent_length][start > parent_length]
end = [end, parent_length][end > parent_length]
span = Span(start, end, tidy, tidy, Reverse=reverse)
if diff < 0:
spans += [LostSpan(-diff), span]
elif diff > 0:
spans += [span, LostSpan(diff)]
else:
spans += [span]
self.offsets = []
self.useful = False
self.complete = True
self.Reverse = None
posn = 0
for span in spans:
self.offsets.append(posn)
posn += span.length
if span.lost:
self.complete = False
elif not self.useful:
self.useful = True
(self.Start, self.End) = (span.Start, span.End)
self.Reverse = span.Reverse
else:
self.Start = min(self.Start, span.Start)
self.End = max(self.End, span.End)
if self.Reverse is not None and (span.Reverse != self.Reverse):
self.Reverse = None
if termini_unknown:
if spans[0].lost:
spans[0] = TerminalPadding(spans[0].length)
if spans[-1].lost:
spans[-1] = TerminalPadding(spans[-1].length)
self.spans = spans
self.length = posn
self.parent_length = parent_length
self.__inverse = None
def __len__(self):
return self.length
def __repr__(self):
return repr(self.spans) + '/%s' % self.parent_length
def __getitem__(self, slice):
# A possible shorter map at the same level
slice = as_map(slice, len(self))
new_parts = []
for span in slice.spans:
new_parts.extend(span.remapWith(self))
return Map(spans=new_parts, parent_length=self.parent_length)
def __mul__(self, scale):
# For Protein -> DNA
new_parts = []
for span in self.spans:
new_parts.append(span * scale)
return Map(spans=new_parts, parent_length=self.parent_length*scale)
def __div__(self, scale):
# For DNA -> Protein
new_parts = []
for span in self.spans:
new_parts.append(span / scale)
return Map(spans=new_parts, parent_length=self.parent_length // scale)
def withTerminiUnknown(self):
return Map(self, spans=self.spans[:],
parent_length=self.parent_length,
termini_unknown = True)
def getCoveringSpan(self):
if self.Reverse == -1:
span = (self.End, self.Start)
else:
span = (self.Start, self.End)
return Map([span], parent_length=self.parent_length)
def covered(self):
""">>> Map([(10,20), (15, 25), (80, 90)]).covered().spans
[Span(10,25), Span(80, 90)]"""
delta = {}
for span in self.spans:
if span.lost:
continue
delta[span.Start] = delta.get(span.Start, 0) + 1
delta[span.End] = delta.get(span.End, 0) - 1
positions = delta.keys()
positions.sort()
last_y = y = 0
last_x = start = None
result = []
for x in positions:
y += delta[x]
if x == last_x:
continue
if y and not last_y:
assert start is None
start = x
elif last_y and not y:
result.append((start, x))
start = None
last_x = x
last_y = y
assert y == 0
return Map(result, parent_length=self.parent_length)
def reversed(self):
spans = [s.reversed() for s in self.spans]
spans.reverse()
return Map(spans=spans, parent_length=self.parent_length)
def nucleicReversed(self):
"""reverses spans according to concept of nucleic acid sequence
reverse complement"""
spans = [s.reversedRelativeTo(self.parent_length) for s in self.spans]
return Map(spans=spans, parent_length=self.parent_length)
def gaps(self):
"""The gaps (lost spans) in this map"""
locations = []
offset = 0
for s in self.spans:
if s.lost:
locations.append((offset, offset+s.length))
offset += s.length
return Map(locations, parent_length=len(self))
def shadow(self):
"""The 'negative' map of the spans not included in this map"""
return self.inverse().gaps()
def nongap(self):
locations = []
offset = 0
for s in self.spans:
if not s.lost:
locations.append((offset, offset+s.length))
offset += s.length
return Map(locations, parent_length=len(self))
def withoutGaps(self):
return Map(
spans = [s for s in self.spans if not s.lost],
parent_length = self.parent_length)
def inverse(self):
if self.__inverse is None:
self.__inverse = self._inverse()
return self.__inverse
def _inverse(self):
# can't work if there are overlaps in the map
# tidy ends don't survive inversion
if self.parent_length is None:
raise ValueError("Uninvertable. Parent length not known")
posn = 0
temp = []
for span in self.spans:
if not span.lost:
if span.Reverse:
temp.append((span.Start, span.End, posn+span.length, posn))
else:
temp.append((span.Start, span.End, posn, posn+span.length))
posn += span.length
temp.sort()
new_spans = []
last_hi = 0
for (lo, hi, start, end) in temp:
if lo > last_hi:
new_spans.append(LostSpan(lo-last_hi))
elif lo < last_hi:
raise ValueError, "Uninvertable. Overlap: %s < %s" % (lo, last_hi)
new_spans.append(Span(start, end, Reverse=start>end))
last_hi = hi
if self.parent_length > last_hi:
new_spans.append(LostSpan(self.parent_length-last_hi))
return Map(spans=new_spans, parent_length=len(self))
class SpansOnly(ConstrainedList):
"""List that converts elements to Spans on addition."""
Mask = FunctionWrapper(Span)
_constraint = ClassChecker(Span)
class Range(SpanI):
"""Complex object consisting of many spans."""
def __init__(self, Spans=[]):
"""Returns a new Range object with data in Spans.
"""
result = SpansOnly()
#need to check if we got a single Span, since they define __iter__.
if isinstance(Spans, Span):
result.append(Spans)
elif hasattr(Spans, 'Spans'): #probably a single range object?
result.extend(Spans.Spans)
else:
for s in iterable(Spans):
if hasattr(s, 'Spans'):
result.extend(s.Spans)
else:
result.append(s)
self.Spans = result
def __str__(self):
"""Returns string representation of self."""
return '(%s)' % ','.join(map(str, self.Spans))
def __len__(self):
"""Returns sum of span lengths.
NOTE: if spans overlap, will count multiple times. Use reduce() to
get rid of overlaps.
"""
return sum(map(len, self.Spans))
def __cmp__(self, other):
"""Compares spans of self with indices of other."""
if hasattr(other, 'Spans'):
return cmp(self.Spans, other.Spans)
elif len(self.Spans) == 1 and hasattr(other, 'Start') and \
hasattr(other, 'End'):
return cmp(self.Spans[0].Start, other.Start) or \
cmp(self.Spans[0].End, other.End)
else:
return object.__cmp__(self, other)
def _get_start(self):
"""Finds earliest start of items in self.Spans."""
return min([i.Start for i in self.Spans])
Start = property(_get_start)
def _get_end(self):
"""Finds latest end of items in self.Spans."""
return max([i.End for i in self.Spans])
End = property(_get_end)
def _get_reverse(self):
"""Reverse is True if any piece is reversed."""
for i in self.Spans:
if i.Reverse:
return True
return False
Reverse = property(_get_reverse)
def reverse(self):
"""Reverses all spans in self."""
for i in self.Spans:
i.reverse()
def __contains__(self, other):
"""Returns True if other completely contained in self.
other must either be a number or have Start and End properties.
"""
if hasattr(other, 'Spans'):
for curr in other.Spans:
found = False
for i in self.Spans:
if curr in i:
found = True
break
if not found:
return False
return True
else:
for i in self.Spans:
if other in i:
return True
return False
def overlaps(self, other):
"""Returns True if any positions in self are also in other."""
if hasattr(other, 'Spans'):
for i in self.Spans:
for j in other.Spans:
if i.overlaps(j):
return True
else:
for i in self.Spans:
if i.overlaps(other):
return True
return False
def overlapsExtent(self, other):
"""Returns True if any positions in self's extent also in other's."""
if hasattr(other, 'Extent'):
return self.Extent.overlaps(other.Extent)
else:
return self.Extent.overlaps(other)
def sort(self):
"""Sorts the spans in self."""
self.Spans.sort()
def __iter__(self):
"""Iterates over indices contained in self."""
return chain(*[iter(i) for i in self.Spans])
def _get_extent(self):
"""Returns Span object representing the extent of self."""
return Span(self.Start, self.End)
Extent = property(_get_extent)
def simplify(self):
"""Reduces the spans in self in-place to get fewest spans.
Will not condense spans with opposite directions.
Will condense adjacent but nonoverlapping spans (e.g. (1,3) and (4,5)).
"""
forward = []
reverse = []
spans = self.Spans[:]
spans.sort()
for span in spans:
if span.Reverse:
direction = reverse
else:
direction = forward
found_overlap = False
for other in direction:
if span.overlaps(other) or (span.Start == other.End) or \
(other.Start == span.End): #handle adjacent spans also
other.Start = min(span.Start, other.Start)
other.End = max(span.End, other.End)
found_overlap = True
break
if not found_overlap:
direction.append(span)
self.Spans[:] = forward + reverse
class Point(Span):
"""Point is a special case of Span, where Start always equals End.
Note that, as per Python standard, a point is _between_ two elements
in a sequence. In other words, a point does not contain any elements.
If you want a single element, use a Span where End = Start + 1.
A Point does have a direction (i.e. a Reverse property) to indicate
where successive items would go if it were expanded.
"""
def __init__(self, Start, Reverse=False):
"""Returns new Point object."""
self.Reverse = Reverse
self._start = Start
def _get_start(self):
"""Returns self.Start."""
return self._start
def _set_start(self, Start):
"""Sets self.Start and self.End."""
self._start = Start
Start = property(_get_start, _set_start)
End = Start #start and end are synonyms for the same property
def RangeFromString(string, delimiter=','):
"""Returns Range object from string of the form 1-5,11,20,30-50.
Ignores whitespace; expects values to be comma-delimited and positive.
"""
result = Range()
pairs = map(strip, string.split(delimiter))
for p in pairs:
if not p: #adjacent delimiters?
continue
if '-' in p: #treat as pair
first, second = p.split('-')
result.Spans.append(Span(int(first), int(second)))
else:
result.Spans.append(Span(int(p)))
return result
|