1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
|
#!/usr/bin/env python
"""Provides Profile and ProfileError object and CharMeaningProfile
Owner: Sandra Smit (Sandra Smit)
"""
from __future__ import division
#SUPPORT2425
#from __future__ import with_statement
from string import maketrans, translate
from numpy import array, sum, transpose, reshape, ones, zeros,\
take, float64, ravel, nonzero, log, put, concatenate, argmax, cumsum,\
sort, argsort, searchsorted, logical_and, asarray, uint8, add, subtract,\
multiply, divide, newaxis, alltrue, max, all, isfinite
#from numpy.oldnumeric import sum
from numpy.random import random
from cogent.util.array import euclidean_distance, row_degeneracy,\
column_degeneracy, row_uncertainty, column_uncertainty, safe_log
from cogent.format.table import formattedCells
##SUPPORT2425
import numpy #from cogent.util.unit_test import numpy_err
__author__ = "Sandra Smit"
__copyright__ = "Copyright 2007-2009, The Cogent Project"
__credits__ = ["Sandra Smit", "Gavin Huttley", "Rob Knight"
"Peter Maxwell"]
__license__ = "GPL"
__version__ = "1.4.1"
__maintainer__ = "Sandra Smit"
__email__ = "sandra.smit@colorado.edu"
__status__ = "Production"
class ProfileError(Exception):
"""Error raised for exceptions occuring in the Profile object"""
pass
class Profile(object):
"""Profile class
"""
def __init__(self, Data, Alphabet, CharOrder=None):
"""Initializes a new Profile object.
Data: numpy 2D array with the Profile data in it.
Specifically, each row of the array corresponds to a position in the
Alignment. Each column of the array corresponds to a character in the
Alphabet.
Alphabet: an Alphabet object or anything that can act as a list of
characters
CharOrder: optional list of characters to which the columns
in the Data correspond.
"""
self.Data = Data
self.Alphabet = Alphabet
if CharOrder is None:
self.CharOrder = list(self.Alphabet)
else:
self.CharOrder = CharOrder
#the translation table is needed for making consensus sequences,
#but will fail if the alphabet isn't made of chars (in which case,
#we'll just skip the translation table, and certain downstream
#operations may fail).
try:
self._translation_table = self._make_translation_table()
except:
pass
def __str__(self):
"""Returns string representation of self.Data"""
return str(self.Data)
def _make_translation_table(self):
"""Makes a translation tables between the CharOrder and indices
"""
indices = ''.join(map(chr, range(len(self.CharOrder))))
chars = ''.join(map(str,self.CharOrder))
return maketrans(chars, indices)
def hasValidData(self, err=1e-16):
"""Returns True if all rows in self.Data add up to one
err -- float, maximum deviation from 1 allowed, default is 1e-16
Rounding errors might occur, so a small deviation from 1 is allowed.
The default tolerance is 1e-16.
"""
obs_sums = sums = sum(self.Data,1)
lower_bound = ones(len(self.Data)) - err
upper_bound = ones(len(self.Data)) + err
tfs = sum(self.Data,1) == ones(len(self.Data))
if (lower_bound <= obs_sums).all() and (obs_sums <= upper_bound).all():
return True
return False
def hasValidAttributes(self):
"""Checks Alphabet, CharOrder, and size of self.Data"""
if not reduce(logical_and, [c in self.Alphabet\
for c in self.CharOrder]):
return False
elif self.Data.shape[1] != len(self.CharOrder):
return False
return True
def isValid(self):
"""Check whether everything in the Profile is valid"""
vd = self.hasValidData()
va = self.hasValidAttributes()
return vd and va
def dataAt(self, pos, character=None):
"""Return data for a certain position (row!) and character (column)
pos -- int, position (row) in the profile
character -- str, character from the CharacterOrder
If character is None, all data for the position is returned.
"""
if not 0 <= pos < len(self.Data):
raise ProfileError(\
"Position %s is not present in the profile"%(pos))
if character is None:
return self.Data[pos,:]
else:
if character not in self.CharOrder:
raise ProfileError(\
"Character %s is not present in the profile's CharacterOrder"\
%(character))
return self.Data[pos, self.CharOrder.index(character)]
def copy(self):
"""Returns a copy of the Profile object
WARNING: the data, alphabet and the character order are the same
object in the original and the copy. This means you can rebind the
attributes, but modifying them will change them in both the original
and the copy.
"""
return self.__class__(self.Data, self.Alphabet, self.CharOrder)
def normalizePositions(self):
"""Normalizes the data by position (the rows!) to one
It does not make sense to normalize anything with negative
numbers in there. However, the method does NOT check for that,
because it would slow down the calculations too much. It will work,
but you might get very unexpected results.
The method will raise an error when one or more rows add up to
one. It checks explicitly for that to avoid OverflowErrors,
ZeroDivisionErrors, and infinities in the results.
WARNING: this method works in place with respect to the Profile
object, not with respect to the Data attribute. Normalization
rebinds self.Data to a new array.
"""
row_sums = sum(self.Data,1)
if (row_sums == 0).any():
zero_indices = nonzero(row_sums==0)[0].tolist()
raise ProfileError,\
"Can't normalize profile, rows at indices %s add up to zero"\
%(zero_indices)
else:
self.Data = self.Data/row_sums[:,newaxis]
def normalizeSequences(self):
"""Normalized the data by sequences (the columns) to one
It does not make sense to normalize anything with negative
numbers in there. However, the method does NOT check for that,
because it would slow down the calculations too much. It will work,
but you might get very unexpected results.
The method will raise an error when one or more columns add up to
one. It checks explicitly for that to avoid OverflowErrors,
ZeroDivisionErrors, and infinities in the results.
WARNING: this method works in place with respect to the Profile
object, not with respect to the Data attribute. Normalization
rebinds self.Data to a new array.
"""
col_sums = sum(self.Data, axis=0)
if (col_sums == 0).any():
zero_indices = nonzero(col_sums==0)[0].tolist()
raise ProfileError,\
"Can't normalize profile, columns at indices %s add up to zero"\
%(zero_indices)
else:
self.Data = self.Data/col_sums
def prettyPrint(self, include_header=False, transpose_data=False,\
column_limit=None, col_sep='\t'):
"""Returns a string method of the data and character order.
include_header: include charcter order or not
transpose_data: data as is (rows are positions) or transposed
(rows are characters) to line it up with an alignment
column_limit = int, maximum number of columns displayed
col_sep = string, column separator
"""
h = self.CharOrder
d = self.Data
if column_limit is None:
max_col_idx = d.shape[1]
else:
max_col_idx = column_limit
if include_header and not transpose_data:
r = [h]+d.tolist()
elif include_header and transpose_data:
r =[[x] + y for x,y in zip(h,transpose(d).tolist())]
elif transpose_data:
r = transpose(d).tolist()
else:
r = d.tolist()
# resize the result based on the column limit
if column_limit is not None:
r = [row[:column_limit] for row in r]
# nicely format the table content, discard the header (already included)
if r:
new_header, formatted_res = formattedCells(r)
else:
formatted_res = r
return '\n'.join([col_sep.join(map(str,i)) for i in formatted_res])
def reduce(self,other,op=add,normalize_input=True,normalize_output=True):
"""Reduces two profiles with some operator and returns a new Profile
other: Profile object
op: operator (e.g. add, subtract, multiply, divide)
normalize_input: whether the input profiles will be normalized
before collapsing. The default is True.
normalize_output: whether the output profile will be normalized.
The default is True
This function is intented for use on normalized profiles. For
safety it'll try to normalize the data before collapsing them.
If you do not normalize your data and set normalize_input to
False, you might get unexpected results.
It does check whether self.Data and other.Data have the same shape
It does not check whether self and other have the same
CharOrder. The resulting Profile gets the alphabet and
char order from self.
"""
if self.Data.shape != other.Data.shape:
raise ProfileError,\
"Cannot collapse profiles of different size: %s, %s"\
%(self.Data.shape,other.Data.shape)
if normalize_input:
self.normalizePositions()
other.normalizePositions()
try:
##SUPPORT2425
ori_err = numpy.geterr()
numpy.seterr(divide='raise')
try: new_data = op(self.Data, other.Data)
finally: numpy.seterr(**ori_err)
#with numpy_err(divide='raise'):
#new_data = op(self.Data, other.Data)
except (OverflowError, ZeroDivisionError, FloatingPointError):
raise ProfileError, "Can't do operation on input profiles"
result = Profile(new_data, self.Alphabet, self.CharOrder)
if normalize_output:
result.normalizePositions()
return result
def __add__(self,other):
"""Binary + operator: adds two profiles element-wise.
Input and output are NOT normalized.
"""
return self.reduce(other, op=add, normalize_input=False,\
normalize_output=False)
def __sub__(self,other):
"""Binary - operator: subtracts two profiles element-wise
Input and output are NOT normalized.
"""
return self.reduce(other, op=subtract, normalize_input=False,\
normalize_output=False)
def __mul__(self,other):
"""* operator: multiplies two profiles element-wise
Input and output are NOT normalized.
"""
return self.reduce(other, op=multiply, normalize_input=False,\
normalize_output=False)
def __div__(self,other):
"""/ operator for old-style division: divides 2 profiles element-wise.
Used when __future__.divsion not imported
Input and output are NOT normalized.
"""
return self.reduce(other, op=divide, normalize_input=False,\
normalize_output=False)
def __truediv__(self,other):
"""/ operator for new-style division: divides 2 profiles element-wise.
Used when __future__.division is in action.
Input and output are NOT normalized.
"""
return self.reduce(other, op=divide, normalize_input=False,\
normalize_output=False)
def distance(self, other, method=euclidean_distance):
"""Returns the distance between two profiles
other: Profile object
method: function used to calculated the distance between two
arrays.
WARNING: In principle works only on profiles of the same size.
However, when one of the two profiles is 1D (which shouldn't
happen) and can be aligned with the other profile the distance
is still calculated and may give unexpected results.
"""
try:
return method(self.Data, other.Data)
except ValueError: #frames not aligned
raise ProfileError,\
"Profiles have different size (and are not aligned): %s %s"\
%(self.Data.shape,other.Data.shape)
def toOddsMatrix(self, symbol_freqs=None):
"""Returns the OddsMatrix of a profile as a new Profile.
symbol_freqs: per character array of background frequencies
e.g. [.25,.25,.25,.25] for equal frequencies for each of the
four bases.
If no symbol frequencies are provided, all symbols will get equal
freqs. The length of symbol freqs should match the number of
columns in the profile! If symbol freqs contains a zero entry,
a ProfileError is raised. This is done to prevent either a
ZeroDivisionError (raised when zero is an int) or 'inf' in the
resulting matrix (which happens when zero is a float).
"""
pl = self.Data.shape[1] #profile length
#if symbol_freqs is None, create an array with equal frequencies
if symbol_freqs is None:
symbol_freqs = ones(pl)/pl
else:
symbol_freqs = array(symbol_freqs)
#raise error when symbol_freqs has wrong length
if len(symbol_freqs) != pl:
raise ProfileError,\
"Length of symbol freqs should be %s, but is %s"\
%(pl,len(symbol_freqs))
#raise error when symbol freqs contains zero (to prevent
#ZeroDivisionError or 'inf' in the resulting matrix)
if sum(symbol_freqs != 0, 0) != len(symbol_freqs):
raise ProfileError,\
"Symbol frequency is not allowed to be zero: %s"\
%(symbol_freqs)
#calculate the OddsMatrix
log_odds = self.Data/symbol_freqs
return Profile(log_odds, self.Alphabet, self.CharOrder)
def toLogOddsMatrix(self, symbol_freqs=None):
"""Returns the LogOddsMatrix of a profile as a new Profile/
symbol_freqs: per character array of background frequencies
e.g. [.25,.25,.25,.25] for equal frequencies for each of the
four bases.
See toOddsMatrix for more information.
"""
odds = self.toOddsMatrix(symbol_freqs)
log_odds = safe_log(odds.Data)
return Profile(log_odds, self.Alphabet, self.CharOrder)
def _score_indices(self, seq_indices, offset=0):
"""Returns score of the profile for each slice of the seq_indices
seq_indices: translation of sequence into indices that match the
characters in the CharOrder of the profile
offset: where to start the matching procedure
This function doesn't do any input validation. That is done in 'score'
See method 'score' for more information.
"""
data = self.Data
pl = len(data) #profile length (number of positions)
sl = len(seq_indices)
r = range(pl) #fixed range
result = []
for starting_pos in range(offset, len(seq_indices)-pl+1):
slice = seq_indices[starting_pos:starting_pos+pl]
result.append(sum(array([data[i] for i in zip(r,slice)]), axis=0))
return array(result)
def _score_profile(self, profile, offset=0):
"""Returns score of the profile against the input_profile.
profile: Profile of a sequence or alignment that has to be scored
offset: where to start the matching procedure
This function doesn't do any input validation. That is done in 'score'
See method 'score' for more information.
"""
data = self.Data
self_l = len(data) #profile length
other_l = len(profile.Data) #other profile length
result = []
for start in range(offset,other_l-self_l+1):
stop = start + self_l
slice = profile.Data[start:stop,:]
result.append(sum(self.Data*slice))
return array(result)
def score(self, input_data, offset=0):
"""Returns a score of the profile against input_data (Profile or Seq).
seq: Profile or Sequence object (or string)
offset: starting index for searching in seq/profile
Returns the score of the profile against all possible subsequences/
subprofiles of the input_data.
This method determines how well a profile fits at different places
in the sequence. This is very useful when the profile is a motif and
you want to find the position in the sequence that best matches the
profile/motif.
Sequence Example:
=================
T C A G
0 .2 .4 .4 0
1 .1 0 .9 0
2 .1 .2 .3 .4
Sequence: TCAAGT
pos 0: TCA -> 0.5
pos 1: CAA -> 1.6
pos 2: AAG -> 1.7
pos 3: AGT -> 0.5
So the subsequence starting at index 2 in the sequence has the
best match with the motif
Profile Example:
================
Profile: same as above
Profile to score:
T C A G
0 1 0 0 0
1 0 1 0 0
2 0 0 .5 .5
3 0 0 0 1
4 .25 .25 .25 .25
pos 0: rows 0,1,2 -> 0.55
pos 1: rows 1,2,3 -> 1.25
pos 2: rows 2,3,4 -> 0.45
"""
#set up some local variables
data = self.Data
pl = len(data) #profile length
is_profile = False
#raise error if profile is empty
if not data.any():
raise ProfileError,"Can't score an empty profile"
#figure out what the input_data type is
if isinstance(input_data,Profile):
is_profile = True
to_score_length = len(input_data.Data)
#raise error if CharOrders don't match
if self.CharOrder != input_data.CharOrder:
raise ProfileError, "Profiles must have same character order"
else: #assumes it get a sequence
to_score_length = len(input_data)
#Profile should fit at least once in the sequence/profile_to_score
if to_score_length < pl:
raise ProfileError,\
"Sequence or Profile to score should be at least %s "%(pl)+\
"characters long, but is %s."%(to_score_length)
#offset should be valid
if not offset <= (to_score_length - pl):
raise ProfileError, "Offset must be <= %s, but is %s"\
%((to_score_length-pl), offset)
#call the apropriate scoring function
if is_profile:
return self._score_profile(input_data, offset)
else:
#translate seq to indices
if hasattr(self, '_translation_table'):
seq_indices = array(map(ord,translate(str(input_data),\
self._translation_table)))
else: #need to figure out where each item is in the charorder
idx = self.CharOrder.index
seq_indices = array(map(idx, input_data))
#raise error if some sequence characters are not in the CharOrder
if (seq_indices > len(self.CharOrder)).any():
raise ProfileError,\
"Sequence contains characters that are not in the "+\
"CharOrder"
#now the profile is scored against the list of indices
return self._score_indices(seq_indices,offset)
def rowUncertainty(self):
"""Returns the uncertainty (Shannon's entropy) for each row in profile
Entropy is returned in BITS (not in NATS).
"""
if not self.Data.any():
return array([])
try:
return row_uncertainty(self.Data)
except ValueError:
raise ProfileError,\
"Profile has to be two dimensional to calculate rowUncertainty"
def columnUncertainty(self):
"""Returns uncertainty (Shannon's entropy) for each column in profile
Uncertainty is returned in BITS (not in NATS).
"""
if not self.Data.any():
return array([])
try:
return column_uncertainty(self.Data)
except ValueError:
raise ProfileError,\
"Profile has to be two dimensional to calculate columnUncertainty"
def rowDegeneracy(self, cutoff=0.5):
"""Returns how many chars are needed to cover the cutoff value.
cutoff: value that should be covered in each row
For example:
pos 0: [.1,.2,.3,.4] char order=TCAG.
If cutoff=0.75 -> degeneracy = 3 (degenearate char for CAG)
If cutoff=0.25 -> degeneracy = 1 (G alone covers this cutoff)
If cutoff=0.5 -> degeneracy = 2 (degenerate char for AG)
If the cutoff value is not reached in the row, the returned value
will be clipped to the length of the character order (=the number
of columns in the Profile).
"""
try:
return row_degeneracy(self.Data,cutoff)
except ValueError:
raise ProfileError,\
"Profile has to be two dimensional to calculate rowDegeneracy"
def columnDegeneracy(self, cutoff=0.5):
"""Returns how many chars are neede to cover the cutoff value
See rowDegeneracy for more information.
"""
try:
return column_degeneracy(self.Data,cutoff)
except ValueError:
raise ProfileError,\
"Profile has to be two dimensional to calculate columnDegeneracy"
def rowMax(self):
"""Returns ara containing most frequent element in each row of the profile."""
return max(self.Data, 1)
def toConsensus(self, cutoff=None, fully_degenerate=False,\
include_all=False):
"""Returns the consensus sequence from a profile.
cutoff: cutoff value, determines how much should be covered in a
position (row) of the profile. Example: pos 0 [.2,.1,.3,.4]
(CharOrder: TCAG). To cover .65 (=cutoff) we need two characters:
A and G, which results in the degenerate character R.
fully_degenerate: determines whether the fully degenerate character
is returned at a position. For the example above an 'N' would
be returned.
inlcude_all: all possibilities are included in the degenerate
character. Example: row = UCAG = [.1,.3,.3,.3] cutoff = .4,
consensus = 'V' (even though only 2 chars would be enough to
reach the cutoff value).
The Alphabet of the Profile should implement degenerateFromSequence.
Note that cutoff has priority over fully_degenerate. In other words,
if you specify a cutoff value and set fully_degenerate to true,
the calculation will be done with the cutoff value. If nothing
gets passed in, the maximum argument is chosen. In the first example
above G will be returned.
"""
#set up some local variables
co = array(self.CharOrder, 'c')
alpha = self.Alphabet
data = self.Data
#determine the action. Cutoff takes priority over fully_degenerate
if cutoff:
result = []
degen = self.rowDegeneracy(cutoff)
sorted = argsort(data)
if include_all:
#if include_all include all possiblilities in the degen char
for row_idx, (num_to_keep, row) in enumerate(zip(degen,sorted)):
to_take = [item for item in row[-num_to_keep:]\
if item in nonzero(data[row_idx])[0]] +\
[item for item in nonzero(data[row_idx] ==\
data[row_idx,row[-num_to_keep]])[0] if item in\
nonzero(data[row_idx])[0]]
result.append(alpha.degenerateFromSequence(\
map(str,take(co, to_take, axis=0))))
else:
for row_idx, (num_to_keep, row) in enumerate(zip(degen,sorted)):
result.append(alpha.degenerateFromSequence(\
map(str,take(co, [item for item in row[-num_to_keep:]\
if item in nonzero(data[row_idx])[0]]))))
elif not fully_degenerate:
result = take(co, argmax(self.Data, axis=-1), axis=0)
else:
result = []
for row in self.Data:
result.append(alpha.degenerateFromSequence(\
map(str,take(co, nonzero(row)[0], axis=0))))
return ''.join(map(str,result))
def randomIndices(self, force_accumulate=False, random_f = random):
"""Returns random indices matching current probability matrix.
Stores cumulative sum (sort of) of probability matrix in
self._accumulated; Use force_accumulate to reset if you change
the matrix in place (which you shouldn't do anyway).
The returned indices correspond to the characters in the
CharOrder of the Profile.
"""
if force_accumulate or not hasattr(self, '_accumulated'):
self._accumulated = cumsum(self.Data, 1)
choices = random_f(len(self.Data))
return array([searchsorted(v, c) for v, c in\
zip(self._accumulated, choices)])
def randomSequence(self, force_accumulate=False, random_f = random):
"""Returns random sequence matching current probability matrix.
Stores cumulative sum (sort of) of probability matrix in
self._accumulated; Use force_accumulate to reset if you change
the matrix in place (which you shouldn't do anyway).
"""
co = self.CharOrder
random_indices = self.randomIndices(force_accumulate,random_f)
return ''.join(map(str,take(co,random_indices)))
def CharMeaningProfile(alphabet, char_order=None, split_degenerates=False):
"""Returns a Profile with the meaning of each character in the alphabet
alphabet: Alphabet object (should have 'Degenerates'if split_degenerates
is set to True)
char_order: string indicating the order of the characters in the profile
split_degenerates: whether the meaning of degenerate symbols in the
alphabet should be split up among the characters in the char order,
or ignored.
The returned profile has 255 rows (one for each ascii character) and
one column for each character in the character order. The profile
specifies the meaning of each character in the alphabet. Chars in the
character order will count as a full character by themselves, degenerate
characters might split their 'value' over several other charcters in the
character order.
Splitting up degenerates: only degenerate characters of which the full
set of symbols it maps onto are in the character order are split up,
others are ignored. E.g. in the DnaAlphabet, if the char order is
TACG, ? (which maps to TCAG-) wouldn't be split up, 'R' (which maps
to 'AG') would.
Any degenerate characters IN the character order will NOT be split up.
It doesn't make sense to split up a character that is in the char order
because it would create an empty column in the profile, so it might
as well be left out alltogether.
Example 1:
Alphabet = DnaAlphabet
Character order = "TCAG"
Split degenerates = False
All the nonzero rows in the resulting profile are:
65: [0,0,1,0] (A)
67: [0,1,0,0] (C)
71: [0,0,0,1] (G)
84: [1,0,0,0] (T)
All other rows will be [0,0,0,0].
Example 2:
Alphabet = DnaAlphabet
Character order = "AGN"
Split degenerates = True
All the nonzero rows in the resulting profile are:
65: [1,0,0] (A)
71: [0,1,0] (G)
78: [0,0,1] (N)
82: [.5,.5,0] (R)
All other rows will be [0,0,0].
Errors are raised when the character order is empty or when there's a
character in the character order that is not in the alphabet.
"""
if not char_order: #both testing for None and for empty string
char_order = list(alphabet)
char_order = array(char_order, 'c')
lc = len(char_order) #length char_order
#initialize the profile. 255 rows (one for each ascii char), one column
#for each character in the character order
result = zeros([255,lc],float64)
if split_degenerates:
degen = alphabet.Degenerates
for degen_char in degen:
#if all characters that the degenerate character maps onto are
#in the character order, split its value up according to the
#alphabet
curr_degens = degen[degen_char]
if all(map(char_order.__contains__, curr_degens)):
contains = map(curr_degens.__contains__, char_order)
result[ord(degen_char)] = \
array(contains, float)/len(curr_degens)
#for each character in the character order, make an entry of ones and
#zeros, matching the character order
for c in char_order:
c = str(c)
if c not in alphabet:
raise ValueError, "Found character in the character order "+\
"that is not in the specified alphabet: %s"%(c)
result[ord(c)] = array(c*lc, 'c') == char_order
return Profile(Data=result,Alphabet=alphabet,CharOrder=char_order)
|