File: tree.py

package info (click to toggle)
python-cogent 1.4.1-1.2
  • links: PTS, VCS
  • area: non-free
  • in suites: squeeze
  • size: 13,260 kB
  • ctags: 20,087
  • sloc: python: 116,163; ansic: 732; makefile: 74; sh: 9
file content (2013 lines) | stat: -rw-r--r-- 80,647 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
#!/usr/bin/env python
"""Classes for storing and manipulating a phylogenetic tree.

These trees can be either strictly binary, or have polytomies
(multiple children to a parent node).

Trees consist of Nodes (or branches) that connect two nodes. The Tree can
be created only from a newick formatted string read either from file or from a
string object. Other formats will be added as time permits.

Tree can:
    -  Deal with either rooted or unrooted tree's and can
       convert between these types.
    -  Return a sub-tree given a list of tip-names
    -  Identify an edge given two tip names. This method facilitates the
       statistical modelling by simplyifying the syntax for specifying
       sub-regions of a tree.
    -  Assess whether two Tree instances represent the same topology.

Definition of relevant terms or abbreviations:
    -  edge: also known as a branch on a tree.
    -  node: the point at which two edges meet
    -  tip: a sequence or species
    -  clade: all and only the nodes (including tips) that descend
       from a node
    -  stem: the edge immediately preceeding a clade
"""
from numpy import zeros
from copy import deepcopy
import re
import logging
from cogent.util.transform import comb
from cogent.maths.stats.test import correlation
from operator import or_
from cogent.util.misc import InverseDict
from random import shuffle

LOG = logging.getLogger('cogent.tree')

__author__ = "Gavin Huttley, Peter Maxwell and Rob Knight"
__copyright__ = "Copyright 2007-2009, The Cogent Project"
__credits__ = ["Gavin Huttley", "Peter Maxwell", "Rob Knight",
                    "Andrew Butterfield", "Catherine Lozupone", "Micah Hamady",
                    "Jeremy Widmann", "Zongzhi Liu", "Daniel McDonald"]
__license__ = "GPL"
__version__ = "1.4.1"
__maintainer__ = "Gavin Huttley"
__email__ = "gavin.huttley@anu.edu.au"
__status__ = "Production"

def distance_from_r_squared(m1, m2):
    """Estimates distance as 1-r^2: no correl = max distance"""
    return 1 - (correlation(m1.flat, m2.flat)[0])**2

def distance_from_r(m1, m2):
    """Estimates distance as (1-r)/2: neg correl = max distance"""
    return (1-correlation(m1.flat, m2.flat)[0])/2

class TreeError(Exception):
    pass

class TreeNode(object):
    """Store information about a tree node. Mutable.
    
    Parameters:
        Name: label for the node, assumed to be unique.
        Children: list of the node's children.
        Params: dict containing arbitrary parameters for the node.
        NameLoaded: ?
    """
    _exclude_from_copy = dict.fromkeys(['_parent','Children'])
    
    def __init__(self, Name=None, Children=None, Parent=None, Params=None, \
            NameLoaded=True, **kwargs):
        """Returns new TreeNode object."""
        self.Name = Name
        self.NameLoaded = NameLoaded
        if Params is None:
            Params = {}
        self.params = Params
        self.Children = []
        if Children is not None:
            self.extend(Children)
        self._parent = Parent
        if (Parent is not None) and not (self in Parent.Children):
            Parent.append(self)

### built-in methods and list interface support
    def __repr__(self):
        """Returns reconstructable string representation of tree.
        
        WARNING: Does not currently set the class to the right type.
        """
        return 'Tree("%s")' % self.getNewick()
    
    def __str__(self):
        """Returns Newick-format string representation of tree."""
        return self.getNewick()
    
    def compareName(self, other):
        """Compares TreeNode by name"""
        if self is other:
            return 0
        try:
            return cmp(self.Name, other.Name)
        except AttributeError:
            return cmp(type(self), type(other))

    def compareByNames(self, other):
        """Equality test for trees by name"""
        # if they are the same object then they must be the same tree...
        if self is other:
            return True
        self_names = self.getNodeNames()
        other_names = other.getNodeNames()
        self_names.sort()
        other_names.sort()
        return self_names == other_names

    def _to_self_child(self, i):
        """Converts i to self's type, with self as its parent.
        
        Cleans up refs from i's original parent, but doesn't give self ref to i.
        """
        c = self.__class__
        if isinstance(i, c):
            if i._parent not in (None, self):
                i._parent.Children.remove(i)
        else:
            i = c(i)
        i._parent = self
        return i
    
    def append(self, i):
        """Appends i to self.Children, in-place, cleaning up refs."""
        self.Children.append(self._to_self_child(i))
    
    def extend(self, items):
        """Extends self.Children by items, in-place, cleaning up refs."""
        self.Children.extend(map(self._to_self_child, items))
    
    def insert(self, index, i):
        """Inserts an item at specified position in self.Children."""
        self.Children.insert(index, self._to_self_child(i))
    
    def pop(self, index=-1):
        """Returns and deletes child of self at index (default: -1)"""
        result = self.Children.pop(index)
        result._parent = None
        return result
    
    def remove(self, target):
        """Removes node by name instead of identity.
        
        Returns True if node was present, False otherwise.
        """
        if isinstance(target, TreeNode):
            target = target.Name
        for (i, curr_node) in enumerate(self.Children):
            if curr_node.Name == target:
                self.removeNode(curr_node)
                return True
        return False
    
    def __getitem__(self, i):
        """Node delegates slicing to Children; faster to access them
        directly."""
        return self.Children[i]
    
    def __setitem__(self, i, val):
        """Node[i] = x sets the corresponding item in Children."""
        curr = self.Children[i]
        if isinstance(i, slice):
            for c in curr:
                c._parent = None
            coerced_val = map(self._to_self_child, val)
            self.Children[i] = coerced_val[:]
        else:   #assume we got a single index
            curr._parent = None
            coerced_val = self._to_self_child(val)
            self.Children[i] = coerced_val
    
    def __delitem__(self, i):
        """del node[i] deletes index or slice from self.Children."""
        curr = self.Children[i]
        if isinstance(i, slice):
            for c in curr:
                c._parent = None
        else:
            curr._parent = None
        del self.Children[i]
    
    def __iter__(self):
        """Node iter iterates over the Children."""
        return iter(self.Children)
    
    def __len__(self):
        """Node len returns number of children."""
        return len(self.Children)
    
    #support for copy module
    def copyRecursive(self, memo=None, _nil=[], constructor='ignored'):
        """Returns copy of self's structure, including shallow copy of attrs.
        
        constructor is ignored; required to support old tree unit tests.
        """
        result = self.__class__()
        efc = self._exclude_from_copy
        for k, v in self.__dict__.items():
            if k not in efc:  #avoid infinite recursion
                result.__dict__[k] = deepcopy(self.__dict__[k])
        for c in self:
            result.append(c.copy())
        return result
    
    def copy(self, memo=None, _nil=[], constructor='ignored'):
        """Returns a copy of self using an iterative approach"""
        def __copy_node(n):
            result = n.__class__()
            efc = n._exclude_from_copy
            for k,v in n.__dict__.items():
                if k not in efc:
                    result.__dict__[k] = deepcopy(n.__dict__[k])
            return result

        root = __copy_node(self)
        nodes_stack = [[root, self, len(self.Children)]]

        while nodes_stack:
            #check the top node, any children left unvisited?
            top = nodes_stack[-1]
            new_top_node, old_top_node, unvisited_children = top

            if unvisited_children:
                top[2] -= 1
                old_child = old_top_node.Children[-unvisited_children]
                new_child = __copy_node(old_child)
                new_top_node.append(new_child)
                nodes_stack.append([new_child, old_child, \
                                    len(old_child.Children)])
            else:  #no unvisited children
                nodes_stack.pop()
        return root

    __deepcopy__ = deepcopy = copy
   
    def copyTopology(self, constructor=None):
        """Copies only the topology and labels of a tree, not any extra data.
        
        Useful when you want another copy of the tree with the same structure
        and labels, but want to e.g. assign different branch lengths and
        environments. Does not use deepcopy from the copy module, so _much_
        faster than the copy() method.
        """
        if constructor is None:
            constructor = self.__class__
        children = [c.copyTopology(constructor) for c in self.Children]
        return constructor(Name=self.Name[:], Children=children)
    
    #support for basic tree operations -- finding objects and moving in the tree
    def _get_parent(self):
        """Accessor for parent.
        
        If using an algorithm that accesses Parent a lot, it will be much
        faster to access self._parent directly, but don't do it if mutating
        self._parent! (or, if you must, remember to clean up the refs).
        """
        return self._parent
    
    def _set_parent(self, Parent):
        """Mutator for parent: cleans up refs in old parent."""
        if self._parent is not None:
            self._parent.removeNode(self)
        self._parent = Parent
        if (Parent is not None) and (not self in Parent.Children):
            Parent.Children.append(self)
    
    Parent = property(_get_parent, _set_parent)
    
    def indexInParent(self):
        """Returns index of self in parent."""
        return self._parent.Children.index(self)
    
    def isTip(self):
        """Returns True if the current node is a tip, i.e. has no children."""
        return not self.Children
    
    def isRoot(self):
        """Returns True if the current is a root, i.e. has no parent."""
        return self._parent is None
   
    def traverse(self, self_before=True, self_after=False, include_self=True):
        """Returns iterator over descendants. Iterative: safe for large trees.

        self_before includes each node before its descendants if True.
        self_after includes each node after its descendants if True.
        include_self includes the initial node if True.
                    
        self_before and self_after are independent. If neither is True, only
        terminal nodes will be returned.
                    
        Note that if self is terminal, it will only be included once even if
        self_before and self_after are both True.
            
        This is a depth-first traversal. Since the trees are not binary,
        preorder and postorder traversals are possible, but inorder traversals
        would depend on the data in the tree and are not handled here.
        """
        if self_before:
            if self_after:
                return self.pre_and_postorder(include_self=include_self)
            else:
                return self.preorder(include_self=include_self)
        else:
            if self_after:
                return self.postorder(include_self=include_self)
            else:
                return self.tips(include_self=include_self)

    def levelorder(self, include_self=True):
        """Performs levelorder iteration over tree"""
        queue = [self]
        while queue:
            curr = queue.pop(0)
            if include_self or (curr is not self):
                yield curr
            if curr.Children:
                queue.extend(curr.Children)

    def preorder(self, include_self=True):
        """Performs preorder iteration over tree."""
        stack = [self]
        while stack:
            curr = stack.pop()
            if include_self or (curr is not self):
                yield curr
            if curr.Children:
                stack.extend(curr.Children[::-1])   #20% faster than reversed    
    def postorder(self, include_self=True):
        """Performs postorder iteration over tree.
        
        This is somewhat inelegant compared to saving the node and its index
        on the stack, but is 30% faster in the average case and 3x faster in
        the worst case (for a comb tree).

        Zongzhi Liu's slower but more compact version is:

        def postorder_zongzhi(self):
            stack = [[self, 0]]
            while stack:
                curr, child_idx = stack[-1]
                if child_idx < len(curr.Children):
                    stack[-1][1] += 1
                    stack.append([curr.Children[child_idx], 0])
                else:
                    yield stack.pop()[0]
        """
        child_index_stack = [0]
        curr = self
        curr_children = self.Children
        curr_children_len = len(curr_children)
        while 1:
            curr_index = child_index_stack[-1]
            #if there are children left, process them
            if curr_index < curr_children_len:
                curr_child = curr_children[curr_index]
                #if the current child has children, go there
                if curr_child.Children:
                    child_index_stack.append(0)
                    curr = curr_child
                    curr_children = curr.Children
                    curr_children_len = len(curr_children)
                    curr_index = 0
                #otherwise, yield that child
                else:
                    yield curr_child
                    child_index_stack[-1] += 1
            #if there are no children left, return self, and move to
            #self's parent
            else:
                if include_self or (curr is not self):
                    yield curr
                if curr is self:
                    break
                curr = curr.Parent
                curr_children = curr.Children
                curr_children_len = len(curr_children)
                child_index_stack.pop()
                child_index_stack[-1] += 1

    def pre_and_postorder(self, include_self=True):
        """Performs iteration over tree, visiting node before and after."""
        #handle simple case first
        if not self.Children:
            if include_self:
                yield self
            raise StopIteration
        child_index_stack = [0]
        curr = self
        curr_children = self.Children
        while 1:
            curr_index = child_index_stack[-1]
            if not curr_index:
                if include_self or (curr is not self):
                    yield curr
            #if there are children left, process them
            if curr_index < len(curr_children):
                curr_child = curr_children[curr_index]
                #if the current child has children, go there
                if curr_child.Children:
                    child_index_stack.append(0)
                    curr = curr_child
                    curr_children = curr.Children
                    curr_index = 0
                #otherwise, yield that child
                else:
                    yield curr_child
                    child_index_stack[-1] += 1
            #if there are no children left, return self, and move to
            #self's parent
            else:
                if include_self or (curr is not self):
                    yield curr
                if curr is self:
                    break
                curr = curr.Parent
                curr_children = curr.Children
                child_index_stack.pop()
                child_index_stack[-1] += 1
 
    def traverse_recursive(self, self_before=True, self_after=False, \
        include_self=True):
        """Returns iterator over descendants. IMPORTANT: read notes below.

        traverse_recursive is slower than traverse, and can lead to stack
        errors. However, you _must_ use traverse_recursive if you plan to
        modify the tree topology as you walk over it (e.g. in post-order),
        because the iterative methods use their own stack that is not updated
        if you alter the tree.
        
        self_before includes each node before its descendants if True.
        self_after includes each node after its descendants if True.
        include_self includes the initial node if True.
        
        self_before and self_after are independent. If neither is True, only
        terminal nodes will be returned.
        
        Note that if self is terminal, it will only be included once even if
        self_before and self_after are both True.
        
        This is a depth-first traversal. Since the trees are not binary,
        preorder and postorder traversals are possible, but inorder traversals
        would depend on the data in the tree and are not handled here.
        """
        if self.Children:
            if self_before and include_self:
                yield self
            for child in self.Children:
                for i in child.traverse_recursive(self_before, self_after):
                    yield i
            if self_after and include_self:
                yield self
        elif include_self:
            yield self
    
    def ancestors(self):
        """Returns all ancestors back to the root. Dynamically calculated."""
        result = []
        curr = self._parent
        while curr is not None:
            result.append(curr)
            curr = curr._parent
        return result
    
    def root(self):
        """Returns root of the tree self is in. Dynamically calculated."""
        curr = self
        while curr._parent is not None:
            curr = curr._parent
        return curr
    
    def isroot(self):
        """Returns True if root of a tree, i.e. no parent."""
        return self._parent is None
    
    def siblings(self):
        """Returns all nodes that are children of the same parent as self.
        
        Note: excludes self from the list. Dynamically calculated.
        """
        if self._parent is None:
            return []
        result = self._parent.Children[:]
        result.remove(self)
        return result
    
    def iterTips(self, include_self=False):
        """Iterates over tips descended from self, [] if self is a tip."""
        #bail out in easy case
        if not self.Children:
            if include_self:
                yield self
            raise StopIteration
        #use stack-based method: robust to large trees
        stack = [self]
        while stack:
            curr = stack.pop()
            if curr.Children:
                stack.extend(curr.Children[::-1])   #20% faster than reversed
            else:
                yield curr 

    def tips(self, include_self=False):
        """Returns tips descended from self, [] if self is a tip."""
        return list(self.iterTips(include_self=include_self))

    def iterNontips(self, include_self=False):
        """Iterates over nontips descended from self, [] if none.

        include_self, if True (default is False), will return the current
        node as part of the list of nontips if it is a nontip."""
        for n in self.traverse(True, False, include_self):
            if n.Children:
                yield n

    def nontips(self, include_self=False):
        """Returns nontips descended from self."""
        return list(self.iterNontips(include_self=include_self))
    
    def istip(self):
        """Returns True if is tip, i.e. no children."""
        return not self.Children
    
    def tipChildren(self):
        """Returns direct children of self that are tips."""
        return [i for i in self.Children if not i.Children]
    
    def nonTipChildren(self):
        """Returns direct children in self that have descendants."""
        return [i for i in self.Children if i.Children]
    
    def childGroups(self):
        """Returns list containing lists of children sharing a state.
        
        In other words, returns runs of tip and nontip children.
        """
        #bail out in trivial cases of 0 or 1 item
        if not self.Children:
            return []
        if len(self.Children) == 1:
            return [self.Children[0]]
        #otherwise, have to do it properly...
        result = []
        curr = []
        state = None
        for i in self.Children:
            curr_state = bool(i.Children)
            if curr_state == state:
                curr.append(i)
            else:
                if curr:
                    result.append(curr)
                    curr = []
                curr.append(i)
                state = curr_state
        #handle last group
        result.append(curr)
        return result
    
    def lastCommonAncestor(self, other):
        """Finds last common ancestor of self and other, or None.
        
        Always tests by identity.
        """
        my_lineage = set([id(node) for node in [self] + self.ancestors()])
        curr = other
        while curr is not None:
            if id(curr) in my_lineage:
                return curr
            curr = curr._parent
        return None
    
    lca = lastCommonAncestor #for convenience
    
    #support for more advanced tree operations
    
    def separation(self, other):
        """Returns number of edges separating self and other."""
        #detect trivial case
        if self is other:
            return 0
        #otherwise, check the list of ancestors
        my_ancestors = dict.fromkeys(map(id, [self] + self.ancestors()))
        count = 0
        while other is not None:
            if id(other) in my_ancestors:
                #need to figure out how many steps there were back from self
                curr = self
                while not(curr is None or curr is other):
                    count += 1
                    curr = curr._parent
                return count
            else:
                count += 1
                other = other._parent
        return None
    
    def descendantArray(self, tip_list=None):
        """Returns numpy array with nodes in rows and descendants in columns.
        
        A value of 1 indicates that the decendant is a descendant of that node/
        A value of 0 indicates that it is not
        
        Also returns a list of nodes in the same order as they are listed
        in the array.
        
        tip_list is a list of the names of the tips that will be considered,
        in the order they will appear as columns in the final array. Internal
        nodes will appear as rows in preorder traversal order.
        """
        
        #get a list of internal nodes
        node_list = [node for node in self.traverse() if node.Children]
        node_list.sort()
        
        #get a list of tip names if one is not supplied
        if not tip_list:
            tip_list = [n.Name for n in self.tips()]
            tip_list.sort()
        #make a blank array of the right dimensions to alter
        result = zeros([len(node_list), len(tip_list)])
        #put 1 in the column for each child of each node
        for (i, node) in enumerate(node_list):
            children = [n.Name for n in node.tips()]
            for (j, dec) in enumerate(tip_list):
                if dec in children:
                    result[i,j] = 1
        return result, node_list
    
    def _default_tree_constructor(self):
        return TreeBuilder(constructor=self.__class__).edgeFromEdge
    
    def nameUnnamedNodes(self):
        """sets the Data property of unnamed nodes to an arbitrary value
        
        Internal nodes are often unnamed and so this function assigns a
        value for referencing."""
        #make a list of the names that are already in the tree
        names_in_use = []
        for node in self.traverse():
            if node.Name:
                names_in_use.append(node.Name)
        #assign unique names to the Data property of nodes where Data = None
        name_index = 1
        for node in self.traverse():
            if not node.Name:
                new_name = 'node' + str(name_index)
                #choose a new name if name is already in tree
                while new_name in names_in_use:
                    name_index += 1
                    new_name = 'node' + str(name_index)
                node.Name = new_name
                names_in_use.append(new_name)
                name_index += 1
    
    def makeTreeArray(self, dec_list=None):
        """Makes an array with nodes in rows and descendants in columns.
        
        A value of 1 indicates that the decendant is a descendant of that node/
        A value of 0 indicates that it is not
        
        also returns a list of nodes in the same order as they are listed
        in the array"""
        #get a list of internal nodes
        node_list = [node for node in self.traverse() if node.Children]
        node_list.sort()
        
        #get a list of tips() Name if one is not supplied
        if not dec_list:
            dec_list = [dec.Name for dec in self.tips()]
            dec_list.sort()
        #make a blank array of the right dimensions to alter
        result = zeros((len(node_list), len(dec_list)))
        #put 1 in the column for each child of each node
        for i, node in enumerate(node_list):
            children = [dec.Name for dec in node.tips()]
            for j, dec in enumerate(dec_list):
                if dec in children:
                    result[i,j] = 1
        return result, node_list
    
    def removeDeleted(self,is_deleted):
        """Removes all nodes where is_deleted tests true.
        
        Internal nodes that have no children as a result of removing deleted
        are also removed.
        """
        #Traverse tree
        for node in list(self.traverse(self_before=False,self_after=True)):
            #if node is deleted
            if is_deleted(node):
                #Store current parent
                curr_parent=node.Parent
                #Set current node's parent to None (this deletes node)
                node.Parent=None
                #While there are no chilren at node and not at root
                while (curr_parent is not None) and (not curr_parent.Children):
                    #Save old parent
                    old_parent=curr_parent
                    #Get new parent
                    curr_parent=curr_parent.Parent
                    #remove old node from tree
                    old_parent.Parent=None
    
    def prune(self):
        """Reconstructs correct topology after nodes have been removed.
        
        Internal nodes with only one child will be removed and new connections
        will be made to reflect change.
        """
        #traverse tree to decide nodes to be removed.
        nodes_to_remove = []
        for node in self.traverse():
            if (node.Parent is not None) and (len(node.Children)==1):
                nodes_to_remove.append(node)
        for node in nodes_to_remove:
            #save current parent
            curr_parent=node.Parent
            #save child
            child=node.Children[0]
            #remove current node by setting parent to None
            node.Parent=None
            #Connect child to current node's parent
            child.Parent=curr_parent
    
    def sameShape(self, other):
        """Ignores lengths and order, so trees should be sorted first"""
        if len(self.Children) != len(other.Children):
            return False
        if self.Children:
            for (self_child, other_child) in zip(self.Children, other.Children):
                if not self_child.sameShape(other_child):
                    return False
            return True
        else:
            return self.Name == other.Name
    
    def getNewickRecursive(self, with_distances=False, semicolon=True, \
            escape_name=True):
        """Return the newick string for this edge.
        
        Arguments:
            - with_distances: whether branch lengths are included.
            - semicolon: end tree string with a semicolon
            - escape_name: if any of these characters []'"(),:;_ exist in a
                nodes name, wrap the name in single quotes
        """
        newick = []
        
        subtrees = [child.getNewick(with_distances, semicolon=False)
                for child in self.Children]
        if subtrees:
            newick.append("(%s)" % ",".join(subtrees))
        
        if self.NameLoaded:
            if self.Name is None:
                name = ''
            else:
                name = str(self.Name)
                if escape_name and not (name.startswith("'") and \
                                        name.endswith("'")):
                    if re.search("""[]['"(),:;_]""", name):
                        name = "'%s'" %  name.replace("'","''")
                    else:
                        name = name.replace(' ','_')
            newick.append(name)
        
        if isinstance(self, PhyloNode):
            if with_distances and self.Length is not None:
                newick.append(":%s" % self.Length)
        
        if semicolon:
            newick.append(";")
        
        return ''.join(newick)

    def getNewick(self, with_distances=False, semicolon=True, escape_name=True):
        """Return the newick string for this tree.

        Arguments:
            - with_distances: whether branch lengths are included.
            - semicolon: end tree string with a semicolon
            - escape_name: if any of these characters []'"(),:;_ exist in a
                nodes name, wrap the name in single quotes

        NOTE: This method returns the Newick representation of this node
        and its descendents. This method is a modification of an implementation
        by Zongzhi Liu
        """
        result = ['(']
        nodes_stack = [[self, len(self.Children)]]
        node_count = 1

        while nodes_stack:
            node_count += 1
            #check the top node, any children left unvisited?
            top = nodes_stack[-1]
            top_node, num_unvisited_children = top
            if num_unvisited_children: #has any child unvisited
                top[1] -= 1  #decrease the #of children unvisited
                next_child = top_node.Children[-num_unvisited_children] # - for order
                #pre-visit
                if next_child.Children:
                    result.append('(')
                nodes_stack.append([next_child, len(next_child.Children)])
            else:  #no unvisited children
                nodes_stack.pop()
                #post-visit
                if top_node.Children:
                    result[-1] = ')'

                if top_node.NameLoaded:
                    if top_node.Name is None:
                        name = ''
                    else:
                        name = str(top_node.Name)
                        if escape_name and not (name.startswith("'") and \
                                                name.endswith("'")):
                            if re.search("""[]['"(),:;_]""", name):
                                name = "'%s'" % name.replace("'", "''")
                            else:
                                name = name.replace(' ','_')
                    result.append(name)
                
                if isinstance(self, PhyloNode):
                    if with_distances and top_node.Length is not None:
                        #result.append(":%s" % top_node.Length)
                        result[-1] = "%s:%s" % (result[-1], top_node.Length)

                result.append(',')

        len_result = len(result)
        if len_result == 2:  # single node no name
            if semicolon:
                return ";"
            else:
                return ''
        elif len_result == 3: # single node with name
            if semicolon:
                return "%s;" % result[1]
            else:
                return result[1]
        else:
            if semicolon:
                result[-1] = ';'
            else:
                result.pop(-1)
            return ''.join(result)
    
    def removeNode(self, target):
        """Removes node by identity instead of value.
        
        Returns True if node was present, False otherwise.
        """
        to_delete = None
        for i, curr_node in enumerate(self.Children):
            if curr_node is target:
                to_delete = i
                break
        if to_delete is None:
            return False
        else:
            del self[to_delete]
            return True
    
    def getEdgeNames(self, tip1name, tip2name,
            getclade, getstem, outgroup_name=None):
        """Return the list of stem and/or sub tree (clade) edge name(s).
        This is done by finding the common intersection, and then getting
        the list of names. If the clade traverses the root, then use the
        outgroup_name argument to ensure valid specification.
        
        Arguments:
            - tip1/2name: edge 1/2 names
            - getstem: whether the name of the clade stem edge is returned.
            - getclade: whether the names of the edges within the clade are
              returned
            - outgroup_name: if provided the calculation is done on a version of
              the tree re-rooted relative to the provided tip.
        
        Usage:
            The returned list can be used to specify subtrees for special
            parameterisation. For instance, say you want to allow the primates
            to have a different value of a particular parameter. In this case,
            provide the results of this method to the parameter controller
            method `setParamRule()` along with the parameter name etc..
        """
        # If outgroup specified put it at the top of the tree so that clades are
        # defined by their distance from it.  This makes a temporary tree with
        # a named edge at it's root, but it's only used here then discarded.
        if outgroup_name is not None:
            outgroup = self.getNodeMatchingName(outgroup_name)
            if outgroup.Children:
                raise TreeError('Outgroup (%s) must be a tip' % outgroup_name)
            self = outgroup.unrootedDeepcopy()
        
        join_edge = self.getConnectingNode(tip1name, tip2name)
        
        edge_names = []
        
        if getstem:
            if join_edge.isroot():
                raise TreeError('LCA(%s,%s) is the root and so has no stem' %
                        (tip1name, tip2name))
            else:
                edge_names.append(join_edge.Name)
        
        if getclade:
            #get the list of names contained by join_edge
            for child in join_edge.Children:
                branchnames = child.getNodeNames(includeself = 1)
                edge_names.extend(branchnames)
        
        return edge_names
    
    def _getNeighboursExcept(self, parent=None):
        # For walking the tree as if it was unrooted.
        return [c for c in (tuple(self.Children) + (self.Parent,))
                if c is not None and c is not parent]
    
    def _getDistances(self, endpoints=None):
        """Iteratively calcluates all of the root-to-tip and tip-to-tip
        distances, resulting in a tuple of:
            - A list of (name, path length) pairs.
            - A dictionary of (tip1,tip2):distance pairs
        """
        ## linearize the tips in postorder.
        # .__start, .__stop compose the slice in tip_order.
        if endpoints is None:
            tip_order = list(self.tips())
        else:
            tip_order = []
            for i,name in enumerate(endpoints):
                node = self.getNodeMatchingName(name)
                tip_order.append(node)
        for i, node in enumerate(tip_order):
            node.__start, node.__stop = i, i+1

        num_tips = len(tip_order)
        result = {}
        tipdistances = zeros((num_tips), float) #distances from tip to curr node

        def update_result():
        # set tip_tip distance between tips of different child
            for child1, child2 in comb(node.Children, 2):
                for tip1 in range(child1.__start, child1.__stop):
                    for tip2 in range(child2.__start, child2.__stop):
                        name1 = tip_order[tip1].Name
                        name2 = tip_order[tip2].Name
                        result[(name1,name2)] = \
                            tipdistances[tip1] + tipdistances[tip2]
                        result[(name2,name1)] = \
                            tipdistances[tip1] + tipdistances[tip2]

        for node in self.traverse(self_before=False, self_after=True):
            if not node.Children:
                continue
            ## subtree with solved child wedges
            starts, stops = [], [] #to calc ._start and ._stop for curr node
            for child in node.Children:
                if hasattr(child, 'Length') and child.Length is not None:
                    child_len = child.Length
                else:
                    child_len = 1 # default length
                tipdistances[child.__start : child.__stop] += child_len
                starts.append(child.__start); stops.append(child.__stop)
            node.__start, node.__stop = min(starts), max(stops)
            ## update result if nessessary
            if len(node.Children) > 1: #not single child
                update_result()

        from_root = []
        for i,n in enumerate(tip_order):
            from_root.append((n.Name, tipdistances[i]))
        return from_root, result

    def getDistances(self, endpoints=None):
        """The distance matrix as a dictionary.
        
        Usage:
            Grabs the branch lengths (evolutionary distances) as
            a complete matrix (i.e. a,b and b,a).
        """
        
        (root_dists, endpoint_dists) = self._getDistances(endpoints)
        return endpoint_dists
   
    def maxTipTipDistance(self):
        """returns the max distance between any pair of tips
        
        Also returns the tip names  that it is between as a tuple"""
        distmtx, tip_order = self.tipToTipDistances()
        idx_max = divmod(distmtx.argmax(),distmtx.shape[1])
        max_pair = (tip_order[idx_max[0]].Name, tip_order[idx_max[1]].Name)
        return distmtx[idx_max], max_pair
 
    def _getSubTree(self, included_names, constructor=None):
        """An equivalent node with possibly fewer children, or None"""
        
        # Renumber autonamed edges
        if constructor is None:
            constructor = self._default_tree_constructor()
        
        if self.Name in included_names:
            return self.deepcopy(constructor=constructor)
        else:
            children = [child._getSubTree(included_names, constructor)
                    for child in self.Children]
            children = [child for child in children if child is not None]
            if len(children) == 0:
                result = None
            elif len(children) == 1:
                # Merge parameter dictionaries by adding lengths and making
                # weighted averages of other parameters.  This should probably
                # be moved out of here into a ParameterSet class (Model?) or
                # tree subclass.
                params = {}
                child = children[0]
                if self.Length is not None and child.Length is not None:
                    shared_params = [n for (n,v) in self.params.items()
                        if v is not None
                        and child.params.get(n) is not None
                        and n is not "length"]
                    length = self.Length + child.Length
                    if length:
                        params = dict([(n,
                                (self.params[n]*self.Length +
                                child.params[n]*child.Length) / length)
                            for n in shared_params])
                        params['length'] = length
                result = child
                result.params = params
            else:
                result = constructor(self, tuple(children))
        return result
    
    def getSubTree(self, name_list, ignore_missing=False):
        """A new instance of a sub tree that contains all the otus that are
        listed in name_list.
        """
        edge_names = self.getNodeNames(includeself=1, tipsonly=False)
        for name in name_list:
            if name not in edge_names and not ignore_missing:
                raise ValueError("edge %s not found in tree" % name)
        
        new_tree = self._getSubTree(name_list)
        if new_tree is None:
            raise TreeError, "no tree created in make sub tree"
        elif new_tree.istip():
            raise TreeError, "only a tip was returned from selecting sub tree"
        else:
            new_tree.Name = "root"
            # keep unrooted
            if len(self.Children) > 2:
                new_tree = new_tree.unrooted()
            return new_tree
    
    def _edgecount(self, parent, cache):
        """"The number of edges beyond 'parent' in the direction of 'self',
        unrooted"""
        neighbours = self._getNeighboursExcept(parent)
        key = (id(parent), id(self))
        if key not in cache:
            cache[key] = 1 + sum([child._edgecount(self, cache)
                    for child in neighbours])
        return cache[key]
    
    def _imbalance(self, parent, cache):
        """The edge count from here, (except via 'parent'), divided into that
        from the heaviest neighbour, and that from the rest of them.  'cache'
        should be a dictionary that can be shared by calls to self.edgecount,
        it stores the edgecount for each node (from self) without having to
        put it on the tree itself."""
        max_weight = 0
        total_weight = 0
        for child in self._getNeighboursExcept(parent):
            weight = child._edgecount(self, cache)
            total_weight += weight
            if weight > max_weight:
                max_weight = weight
                biggest_branch = child
        return (max_weight, total_weight-max_weight, biggest_branch)
    
    def _sorted(self, sort_order):
        """Score all the edges, sort them, and return minimum score and a
        sorted tree.
        """
        # Only need to duplicate whole tree because of .Parent pointers
        
        constructor = self._default_tree_constructor()
        
        if not self.Children:
            tree = self.deepcopy(constructor)
            score = sort_order.index(self.Name)
        else:
            scored_subtrees = [child._sorted(sort_order)
                    for child in self.Children]
            scored_subtrees.sort()
            children = tuple([child.deepcopy(constructor)
                    for (score, child) in scored_subtrees])
            tree = constructor(self, children)
            
            non_null_scores = [score
                    for (score, child) in scored_subtrees if score is not None]
            score = (non_null_scores or [None])[0]
        return (score, tree)
    
    def sorted(self, sort_order=[]):
        """An equivalent tree sorted into a standard order. If this is not
        specified then alphabetical order is used.  At each node starting from
        root, the algorithm will try to put the descendant which contains the
        lowest scoring tip on the left.
        """
        tip_names = self.getTipNames()
        tip_names.sort()
        full_sort_order = sort_order + tip_names
        (score, tree) = self._sorted(full_sort_order)
        return tree
    
    def _asciiArt(self, char1='-', show_internal=True, compact=False):
        LEN = 10
        PAD = ' ' * LEN
        PA = ' ' * (LEN-1)
        namestr = self.Name or '' # prevents name of NoneType
        if self.Children:
            mids = []
            result = []
            for c in self.Children:
                if c is self.Children[0]:
                    char2 = '/'
                elif c is self.Children[-1]:
                    char2 = '\\'
                else:
                    char2 = '-'
                (clines, mid) = c._asciiArt(char2, show_internal, compact)
                mids.append(mid+len(result))
                result.extend(clines)
                if not compact:
                    result.append('')
            if not compact:
                result.pop()
            (lo, hi, end) = (mids[0], mids[-1], len(result))
            prefixes = [PAD] * (lo+1) + [PA+'|'] * (hi-lo-1) + [PAD] * (end-hi)
            mid = (lo + hi) / 2
            prefixes[mid] = char1 + '-'*(LEN-2) + prefixes[mid][-1]
            result = [p+l for (p,l) in zip(prefixes, result)]
            if show_internal:
                stem = result[mid]
                result[mid] = stem[0] + namestr + stem[len(namestr)+1:]
            return (result, mid)
        else:
            return ([char1 + '-' + namestr], 0)
    
    def asciiArt(self, show_internal=True, compact=False):
        """Returns a string containing an ascii drawing of the tree.
        
        Arguments:
        - show_internal: includes internal edge names.
        - compact: use exactly one line per tip.
        """
        (lines, mid) = self._asciiArt(
                show_internal=show_internal, compact=compact)
        return '\n'.join(lines)
    
    def _getXmlLines(self, indent=0, parent_params=None):
        """Return the xml strings for this edge.
        """
        params = {}
        if parent_params is not None:
            params.update(parent_params)
        pad = '  ' * indent
        xml = ["%s<clade>" % pad]
        if self.NameLoaded:
            xml.append("%s   <name>%s</name>" % (pad, self.Name))
        for (n,v) in self.params.items():
            if v == params.get(n, None):
                continue
            xml.append("%s   <param><name>%s</name><value>%s</value></param>"
                    % (pad, n, v))
            params[n] = v
        for child in self.Children:
            xml.extend(child._getXmlLines(indent + 1, params))
        xml.append(pad + "</clade>")
        return xml
    
    def getXML(self):
        """Return XML formatted tree string."""
        header = ['<?xml version="1.0"?>']  # <!DOCTYPE ...
        return '\n'.join(header + self._getXmlLines())
    
    def writeToFile(self, filename, with_distances=True, format=None):
        """Save the tree to filename
        
        Arguments:
            - filename: self-evident
            - with_distances: whether branch lengths are included in string.
            - format: default is newick, xml is alternate. Argument overrides
              the filename suffix. All attributes are saved in the xml format.
        """
        if format:
            xml = format.lower() == 'xml'
        else:
            xml = filename.lower().endswith('xml')
        
        if xml:
            data = self.getXML()
        else:
            data = self.getNewick(with_distances=with_distances)
        outf = open(filename, "w")
        outf.writelines(data)
        outf.close()

    def getNodeNames(self, includeself=True, tipsonly=False):
        """Return a list of edges from this edge - may or may not include self.
        This node (or first connection) will be the first, and then they will
        be listed in the natural traverse order.
        """
        if tipsonly:
            nodes = self.traverse(self_before=False, self_after=False)
        else:
            nodes = list(self.traverse())
            if not includeself:
                nodes = nodes[:-1]
        return [node.Name for node in nodes]
   
    def getTipNames(self, includeself=False):
        """return the list of the names of all tips contained by this edge
        """
        return self.getNodeNames(includeself, tipsonly=True)
    
    def getEdgeVector(self):
        """Collect the list of edges in postfix order"""
        return [node for node in self.traverse(False, True)]
    
    def _getNodeMatchingName(self, name):
        """
        find the edge with the name, or return None
        """
        for node in self.traverse(self_before=True, self_after=False):
            if node.Name == name:
                return node
        return None
    
    def getNodeMatchingName(self, name):
        node = self._getNodeMatchingName(name)
        if node is None:
            raise TreeError("No node named '%s' in %s" %
                    (name, self.getTipNames()))
        return node
    
    def getConnectingNode(self, name1, name2):
        """Finds the last common ancestor of the two named edges."""
        edge1 = self.getNodeMatchingName(name1)
        edge2 = self.getNodeMatchingName(name2)
        lca = edge1.lastCommonAncestor(edge2)
        if lca is None:
            raise TreeError("No LCA found for %s and %s" % (name1, name2))
        return lca
    
    def getConnectingEdges(self, name1, name2):
        """returns a list of edges connecting two nodes
    
        includes self and other in the list"""
        edge1 = self.getNodeMatchingName(name1)
        edge2 = self.getNodeMatchingName(name2)
        LCA = self.getConnectingNode(name1, name2)
        node_path = [edge1]
        node_path.extend(edge1.ancestors())
        #remove nodes deeper than the LCA
        LCA_ind = node_path.index(LCA)
        node_path = node_path[:LCA_ind+1]
        #remove LCA and deeper nodes from anc list of other
        anc2 = edge2.ancestors()
        LCA_ind = anc2.index(LCA)
        anc2 = anc2[:LCA_ind]
        anc2.reverse()
        node_path.extend(anc2)
        node_path.append(edge2)
        return node_path
    
    def getParamValue(self, param, edge):
        """returns the parameter value for named edge"""
        return self.getNodeMatchingName(edge).params[param]
    
    def setParamValue(self, param, edge, value):
        """set's the value for param at named edge"""
        self.getNodeMatchingName(edge).params[param] = value

    def reassignNames(self, mapping, nodes=None):
        """Reassigns node names based on a mapping dict

        mapping : dict, old_name -> new_name
        nodes : specific nodes for renaming (such as just tips, etc...)
        """
        if nodes is None:
            nodes = self.traverse()

        for n in nodes:
            if n.Name in mapping:
                n.Name = mapping[n.Name]

    def getNodesDict(self):
        """Returns a dict keyed by node name, value is node

        Will raise TreeError if non-unique names are encountered
        """
        res = {}

        for n in self.traverse():
            if n.Name in res:
                raise TreeError, "getNodesDict requires unique node names"
            else:
                res[n.Name] = n

        return res

    def subset(self):
        """Returns set of names that descend from specified node"""
        return frozenset([i.Name for i in self.tips()])

    def subsets(self):
        """Returns all sets of names that come from specified node and its kids"""
        sets = []
        for i in self.traverse(self_before=False, self_after=True, \
            include_self=False):
            if not i.Children:
                i.__leaf_set = frozenset([i.Name])
            else:
                leaf_set = reduce(or_, [c.__leaf_set for c in i.Children])
                if len(leaf_set) > 1:
                    sets.append(leaf_set)
                i.__leaf_set = leaf_set
        return frozenset(sets)
                
    def compareBySubsets(self, other, exclude_absent_taxa=False):
        """Returns fraction of overlapping subsets where self and other differ.
            
        Other is expected to be a tree object compatible with PhyloNode.
        
        Note: names present in only one of the two trees will count as 
        mismatches: if you don't want this behavior, strip out the non-matching
        tips first.
        """
        self_sets, other_sets = self.subsets(), other.subsets()
        if exclude_absent_taxa:
            in_both = self.subset() & other.subset()
            self_sets = [i & in_both for i in self_sets]
            self_sets = frozenset([i for i in self_sets if len(i) > 1])
            other_sets = [i & in_both for i in other_sets]
            other_sets = frozenset([i for i in other_sets if len(i) > 1])
        total_subsets = len(self_sets) + len(other_sets)
        intersection_length = len(self_sets & other_sets)
        if not total_subsets:   #no common subsets after filtering, so max dist
            return 1
        return 1 - 2*intersection_length/float(total_subsets)

    def tipToTipDistances(self, default_length=1):
        """Returns distance matrix between all pairs of tips, and a tip order.
            
        Warning: .__start and .__stop added to self and its descendants.

        tip_order contains the actual node objects, not their names (may be
        confusing in some cases).
        """
        ## linearize the tips in postorder.
        # .__start, .__stop compose the slice in tip_order.
        tip_order = list(self.tips())
        for i, tip in enumerate(tip_order):
            tip.__start, tip.__stop = i, i+1

        num_tips = len(tip_order)
        result = zeros((num_tips, num_tips), float) #tip by tip matrix
        tipdistances = zeros((num_tips), float) #distances from tip to curr node

        def update_result(): 
        # set tip_tip distance between tips of different child
            for child1, child2 in comb(node.Children, 2):
                for tip1 in range(child1.__start, child1.__stop):
                    for tip2 in range(child2.__start, child2.__stop):
                        result[tip1,tip2] = \
                            tipdistances[tip1] + tipdistances[tip2]

        for node in self.traverse(self_before=False, self_after=True):
            if not node.Children:
                continue
            ## subtree with solved child wedges
            starts, stops = [], [] #to calc ._start and ._stop for curr node
            for child in node.Children:
                if hasattr(child, 'Length') and child.Length is not None:
                    child_len = child.Length
                else:
                    child_len = default_length
                tipdistances[child.__start : child.__stop] += child_len
                starts.append(child.__start); stops.append(child.__stop)
            node.__start, node.__stop = min(starts), max(stops)
            ## update result if nessessary
            if len(node.Children) > 1: #not single child
                update_result()
        return result+result.T, tip_order 

    def compareByTipDistances(self, other, dist_f=distance_from_r):
        """Compares self to other using tip-to-tip distance matrices.

        Value returned is dist_f(m1, m2) for the two matrices. Default is
        to use the Pearson correlation coefficient, with +1 giving a distance
        of 0 and -1 giving a distance of +1 (the madimum possible value).
        Depending on the application, you might instead want to use
        distance_from_r_squared, which counts correlations of both +1 and -1
        as identical (0 distance).
        
        Note: automatically strips out the names that don't match (this is
        necessary for this method because the distance between non-matching 
        names and matching names is undefined in the tree where they don't 
        match, and because we need to reorder the names in the two trees to 
        match up the distance matrices).
        """
        self_names = [i.Name for i in self.tips()]
        other_names = [i.Name for i in other.tips()]
        common_names = frozenset(self_names) & frozenset(other_names)
        if not common_names:
            raise ValueError, "No names in common between the two trees."""
        if len(common_names) <= 2:
            return 1    #the two trees must match by definition in this case
        #figure out correct order of the two name matrices
        self_order = [self_names.index(i) for i in common_names]
        other_order = [other_names.index(i) for i in common_names]
        self_matrix = self.tipToTipDistances()[0][self_order][:,self_order]
        other_matrix = other.tipToTipDistances()[0][other_order][:,other_order]
        return dist_f(self_matrix, other_matrix)

class PhyloNode(TreeNode):

    def __init__(self, *args, **kwargs):
        length = kwargs.get('Length', None)
        params = kwargs.get('Params', {})
        if 'length' not in params:
            params['length'] = length
        kwargs['Params'] = params
        super(PhyloNode, self).__init__(*args, **kwargs)

    def _set_length(self, value):
        if not hasattr(self, "params"):
            self.params = {}
        self.params["length"] = value
    
    def _get_length(self):
        return self.params.get("length", None)
    
    Length = property(_get_length, _set_length)

    def getNewick(self, with_distances=False, semicolon=True, escape_name=True):
        return TreeNode.getNewick(self, with_distances, semicolon, escape_name)
    
    def __str__(self):
        """Returns string version of self, with names and distances."""
        return self.getNewick(with_distances=True)
    
    
    def distance(self, other):
        """Returns branch length between self and other."""
        #never any length between self and other
        if self is other:
            return 0
        #otherwise, find self's ancestors and find the first ancestor of
        #other that is in the list
        self_anc = self.ancestors()
        self_anc_dict = dict([(id(n),n) for n in self_anc])
        self_anc_dict[id(self)] = self
        
        count = 0
        while other is not None:
            if id(other) in self_anc_dict:
                #found the first shared ancestor -- need to sum other branch
                curr = self
                while curr is not other:
                    if curr.Length:
                        count += curr.Length
                    curr = curr._parent
                return count
            else:
                if other.Length:
                    count += other.Length
            other = other._parent
        return None

    def totalDescendingBranchLength(self):
        """Returns total descending branch length from self"""
        return sum([n.Length for n in self.traverse(include_self=False) \
                                     if n.Length is not None])

    def tipsWithinDistance(self, distance):
        """Returns tips within specified distance from self

        Branch lengths of None will be interpreted as 0
        """
        def get_distance(d1, d2):
            if d2 is None:
                return d1
            else:
                return d1 + d2

        to_process = [(self, 0.0)]
        tips_to_save = []

        curr_node, curr_dist = to_process[0]

        seen = set([id(self)])
        while to_process:
            curr_node, curr_dist = to_process.pop(0)
           
            # have we've found a tip within distance?
            if curr_node.isTip() and curr_node != self:
                tips_to_save.append(curr_node)
                continue
        
            # add the parent node if it is within distance
            parent_dist = get_distance(curr_dist, curr_node.Length)
            if curr_node.Parent is not None and parent_dist <= distance and \
                    id(curr_node.Parent) not in seen:
                to_process.append((curr_node.Parent, parent_dist))
                seen.add(id(curr_node.Parent))

            # add children if we haven't seen them and if they are in distance
            for child in curr_node.Children:
                if id(child) in seen:
                    continue
                seen.add(id(child))

                child_dist = get_distance(curr_dist, child.Length)
                if child_dist <= distance:
                    to_process.append((child, child_dist))

        return tips_to_save

    def prune(self):
        """Reconstructs correct tree after nodes have been removed.
        
        Internal nodes with only one child will be removed and new connections
        and Branch lengths will be made to reflect change. 
        """
        #traverse tree to decide nodes to be removed.
        nodes_to_remove = []
        for node in self.traverse():
            if (node.Parent is not None) and (len(node.Children)==1):
                nodes_to_remove.append(node)
        for node in nodes_to_remove:
            #save current parent
            curr_parent=node.Parent
            #save child
            child=node.Children[0]
            #remove current node by setting parent to None
            node.Parent=None
            #Connect child to current node's parent
            child.Parent=curr_parent
            #Add the Length of the removed node to the Length of the Child
            if child.Length is None or node.Length is None:
                child.Length = child.Length or node.Length
            else:
                child.Length = child.Length + node.Length

    def unrootedDeepcopy(self, constructor=None, parent=None):
        # walks the tree unrooted-style, ie: treating self.Parent as just
        # another child 'parent' is where we got here from, ie: the neighbour
        # that we don't need to explore.
        if constructor is None:
            constructor = self._default_tree_constructor()
        
        neighbours = self._getNeighboursExcept(parent)
        children = []
        for child in neighbours:
            children.append(child.unrootedDeepcopy(constructor, parent=self))
        
        # we might be walking UP the tree, so:
        if parent is None:
            # base edge
            edge = None
        elif parent.Parent is self:
            # self's parent is becoming self's child, and edge params are stored
            # by the child
            edge = parent
        else:
            assert parent is self.Parent
            edge = self
        
        result = constructor(edge, tuple(children))
        if parent is None:
            result.Name = "root"
        return result
    
    def bifurcating(self, constructor=None):
        # With every node having 2 or fewer children.
        if constructor is None:
            constructor = self._default_tree_constructor()
        children = [child.bifurcating(constructor) for child in self.Children]
        while len(children) > 2:
            extra = constructor(None, tuple(children[-2:]))
            children[-2:] = [extra]
        result = constructor(self, tuple(children))
        return result
    
    def balanced(self):
        """Tree 'rooted' here with no neighbour having > 50% of the edges.
        
        Usage:
            Using a balanced tree can substantially improve performance of
            the likelihood calculations. Note that the resulting tree has a
            different orientation with the effect that specifying clades or
            stems for model parameterisation should be done using the
            'outgroup_name' argument.
        """
        # this should work OK on ordinary 3-way trees, not so sure about
        # other cases.  Given 3 neighbours, if one has > 50% of edges it
        # can only improve things to divide it up, worst case:
        # (51),25,24 -> (50,1),49.
        # If no neighbour has >50% we can't improve on where we are, eg:
        # (49),25,26 -> (20,19),51
        last_edge = None
        edge = self
        known_weight = 0
        cache = {}
        while 1:
            (max_weight, remaining_weight, next_edge) = edge._imbalance(
                    last_edge, cache)
            known_weight += remaining_weight
            if max_weight <= known_weight+2:
                break
            last_edge = edge
            edge = next_edge
            known_weight += 1
        return edge.unrootedDeepcopy()
    
    def sameTopology(self, other):
        """Tests whether two trees have the same topology."""
        tip_names = self.getTipNames()
        root_at = tip_names[0]
        me = self.rootedWithTip(root_at).sorted(tip_names)
        them = other.rootedWithTip(root_at).sorted(tip_names)
        return self is other or me.sameShape(them)
    
    def unrooted(self):
        """A tree with at least 3 children at the root.
        """
        constructor = self._default_tree_constructor()
        need_to_expand = len(self.Children) < 3
        new_children = []
        for oldnode in self.Children:
            if oldnode.Children and need_to_expand:
                for sib in oldnode.Children:
                    sib = sib.deepcopy(constructor)
                    if sib.Length is not None and oldnode.Length is not None:
                        sib.Length += oldnode.Length
                    new_children.append(sib)
                need_to_expand = False
            else:
                new_children.append(oldnode.deepcopy(constructor))
        return constructor(self, new_children)
    
    def rootedAt(self, edge_name):
        """Return a new tree rooted at the provided node.
        
        Usage:
            This can be useful for drawing unrooted trees with an orientation
            that reflects knowledge of the true root location.
        """
        newroot = self.getNodeMatchingName(edge_name)
        if not newroot.Children:
            raise TreeError("Can't use a tip (%s) as the root" %
                    repr(edge_name))
        return newroot.unrootedDeepcopy()
    
    def rootedWithTip(self, outgroup_name):
        """A new tree with the named tip as one of the root's children"""
        tip = self.getNodeMatchingName(outgroup_name)
        return tip.Parent.unrootedDeepcopy()

    def rootAtMidpoint(self):
        """ return a new tree rooted at midpoint of the two tips farthest apart
    
        this fn doesn't preserve the internal node naming or structure,
        but does keep tip to tip distances correct.  uses unrootedDeepcopy()
        """
        # max_dist, tip_names = tree.maxTipTipDistance()
        # this is slow
    
        max_dist, tip_names = self.maxTipTipDistance()
        half_max_dist = max_dist/2.0
        # print tip_names
        tip1 = self.getNodeMatchingName(tip_names[0])
        tip2 = self.getNodeMatchingName(tip_names[1])
        lca = self.getConnectingNode(tip_names[0],tip_names[1]) # last comm ancestor
        if tip1.distance(lca) > half_max_dist:
            climb_node = tip1
        else:
            climb_node = tip2
        
        dist_climbed = climb_node.Length
        while dist_climbed <= half_max_dist:
            climb_node = climb_node.Parent
            dist_climbed += climb_node.Length
    
        dist_climbed -= climb_node.Length # dist is now dist from tip to climb_node
        
        # now midpt is either at climb_node or on the branch to its parent
        # print dist_climbed, half_max_dist, 'dists cl hamax'
        if dist_climbed == half_max_dist:
            if climb_node.isTip():
                raise RuntimeError('error trying to root tree at tip')
            else:
                # print climb_node.Name, 'clmb node'
                return climb_node.unrootedDeepcopy()
        
        else:
            old_br_len = climb_node.Length
            new_root = type(self)()
            new_root.Parent = climb_node.Parent
            climb_node.Parent = new_root
            climb_node.Length = half_max_dist - dist_climbed
            new_root.Length = old_br_len - climb_node.Length
            return new_root.unrootedDeepcopy()

    
    def _find_midpoint_nodes(self, max_dist, tip_pair):
        """returns the nodes surrounding the maxTipTipDistance midpoint 
        
        WAS used for midpoint rooting.  ORPHANED NOW
        max_dist: The maximum distance between any 2 tips
        tip_pair: Names of the two tips associated with max_dist
        """
        half_max_dist = max_dist/2.0
        #get a list of the nodes that separate the tip pair
        node_path = self.getConnectingEdges(tip_pair[0], tip_pair[1])
        tip1 = self.getNodeMatchingName(tip_pair[0])
        for index, node in enumerate(node_path):
            dist = tip1.distance(node)
            if dist > half_max_dist:
                return node, node_path[index-1]

    def setTipDistances(self):
        """Sets distance from each node to the most distant tip."""
        for node in self.traverse(self_before=False, self_after=True):
            if node.Children:
                node.TipDistance = max([c.Length + c.TipDistance for \
                    c in node.Children])
            else:
                node.TipDistance = 0

    def scaleBranchLengths(self, max_length=100, ultrametric=False):
        """Scales BranchLengths in place to integers for ascii output.

        Warning: tree might not be exactly the length you specify.

        Set ultrametric=True if you want all the root-tip distances to end
        up precisely the same.
        """
        self.setTipDistances()
        orig_max = max([n.TipDistance for n in self.traverse()])
        if not ultrametric: #easy case -- just scale and round
            for node in self.traverse():
                curr = node.Length
                if curr is not None:
                    node.ScaledBranchLength =  \
                        max(1, int(round(1.0*curr/orig_max*max_length)))
        else:   #hard case -- need to make sure they all line up at the end
            for node in self.traverse(self_before=False, self_after=True):
                if not node.Children:   #easy case: ignore tips
                    node.DistanceUsed = 0
                    continue
                #if we get here, we know the node has children
                #figure out what distance we want to set for this node
                ideal_distance=int(round(node.TipDistance/orig_max*max_length))
                min_distance = max([c.DistanceUsed for c in node.Children]) + 1
                distance = max(min_distance, ideal_distance)
                for c in node.Children:
                    c.ScaledBranchLength = distance - c.DistanceUsed
                node.DistanceUsed = distance
        #reset the BranchLengths
        for node in self.traverse(self_before=True, self_after=False):
            if node.Length is not None:
                node.Length = node.ScaledBranchLength
            if hasattr(node, 'ScaledBranchLength'):
                del node.ScaledBranchLength
            if hasattr(node, 'DistanceUsed'):
                del node.DistanceUsed
            if hasattr(node, 'TipDistance'):
                del node.TipDistance

    def _getDistances(self, endpoints=None):
        """Iteratively calcluates all of the root-to-tip and tip-to-tip
        distances, resulting in a tuple of:
            - A list of (name, path length) pairs.
            - A dictionary of (tip1,tip2):distance pairs
        """
        ## linearize the tips in postorder.
        # .__start, .__stop compose the slice in tip_order.
        if endpoints is None:
            tip_order = list(self.tips())
        else:
            tip_order = []
            for i,name in enumerate(endpoints):
                node = self.getNodeMatchingName(name)
                tip_order.append(node)
        for i, node in enumerate(tip_order):
            node.__start, node.__stop = i, i+1

        num_tips = len(tip_order)
        result = {}
        tipdistances = zeros((num_tips), float) #distances from tip to curr node

        def update_result():
        # set tip_tip distance between tips of different child
            for child1, child2 in comb(node.Children, 2):
                for tip1 in range(child1.__start, child1.__stop):
                    for tip2 in range(child2.__start, child2.__stop):
                        name1 = tip_order[tip1].Name
                        name2 = tip_order[tip2].Name
                        result[(name1,name2)] = \
                            tipdistances[tip1] + tipdistances[tip2]
                        result[(name2,name1)] = \
                            tipdistances[tip1] + tipdistances[tip2]

        for node in self.traverse(self_before=False, self_after=True):
            if not node.Children:
                continue
            ## subtree with solved child wedges
            starts, stops = [], [] #to calc ._start and ._stop for curr node
            for child in node.Children:
                if hasattr(child, 'Length') and child.Length is not None:
                    child_len = child.Length
                else:
                    child_len = 1 # default length
                tipdistances[child.__start : child.__stop] += child_len
                starts.append(child.__start); stops.append(child.__stop)
            node.__start, node.__stop = min(starts), max(stops)
            ## update result if nessessary
            if len(node.Children) > 1: #not single child
                update_result()

        from_root = []
        for i,n in enumerate(tip_order):
            from_root.append((n.Name, tipdistances[i]))
        return from_root, result

    def getDistances(self, endpoints=None):
        """The distance matrix as a dictionary.
        
        Usage:
            Grabs the branch lengths (evolutionary distances) as
            a complete matrix (i.e. a,b and b,a)."""

        (root_dists, endpoint_dists) = self._getDistances(endpoints)
        return endpoint_dists

    def tipToTipDistances(self, endpoints=None, default_length=1):
        """Returns distance matrix between all pairs of tips, and a tip order.
            
        Warning: .__start and .__stop added to self and its descendants.

        tip_order contains the actual node objects, not their names (may be
        confusing in some cases).
        """
        all_tips = self.tips()
        if endpoints is None:
            tip_order = list(all_tips)
        else:
             if isinstance(endpoints[0], PhyloNode):
                tip_order = endpoints
             else:
                tip_order = [self.getNodeMatchingName(n) for n in endpoints]

        ## linearize all tips in postorder
        # .__start, .__stop compose the slice in tip_order.
        for i, node in enumerate(all_tips):
            node.__start, node.__stop = i, i+1
        
        # the result map provides index in the result matrix
        result_map = dict([(n.__start,i) for i,n in enumerate(tip_order)])
        num_all_tips = len(all_tips) # total number of tips
        num_tips = len(tip_order) # total number of tips in result
        result = zeros((num_tips, num_tips), float) # tip by tip matrix
        tipdistances = zeros((num_all_tips), float) # dist from tip to curr node

        def update_result():
        # set tip_tip distance between tips of different child
            for child1, child2 in comb(node.Children, 2):
                for tip1 in range(child1.__start, child1.__stop):
                    if tip1 not in result_map:
                        continue
                    res_tip1 = result_map[tip1]
                    for tip2 in range(child2.__start, child2.__stop):
                        if tip2 not in result_map:
                            continue
                        result[res_tip1,result_map[tip2]] = \
                            tipdistances[tip1] + tipdistances[tip2]

        for node in self.traverse(self_before=False, self_after=True):
            if not node.Children:
                continue
            ## subtree with solved child wedges
            starts, stops = [], [] #to calc ._start and ._stop for curr node
            for child in node.Children:
                if hasattr(child, 'Length') and child.Length is not None:
                    child_len = child.Length
                else:
                    child_len = default_length
                tipdistances[child.__start : child.__stop] += child_len
                starts.append(child.__start); stops.append(child.__stop)
            node.__start, node.__stop = min(starts), max(stops)
            ## update result if nessessary
            if len(node.Children) > 1: #not single child
                update_result()
        return result+result.T, tip_order

    def compareByTipDistances(self, other, sample=None, dist_f=distance_from_r,\
            shuffle_f=shuffle):
        """Compares self to other using tip-to-tip distance matrices.

        Value returned is dist_f(m1, m2) for the two matrices. Default is
        to use the Pearson correlation coefficient, with +1 giving a distance
        of 0 and -1 giving a distance of +1 (the madimum possible value).
        Depending on the application, you might instead want to use
        distance_from_r_squared, which counts correlations of both +1 and -1
        as identical (0 distance).
        
        Note: automatically strips out the names that don't match (this is
        necessary for this method because the distance between non-matching 
        names and matching names is undefined in the tree where they don't 
        match, and because we need to reorder the names in the two trees to 
        match up the distance matrices).
        """
        self_names = dict([(i.Name, i) for i in self.tips()])
        other_names = dict([(i.Name, i) for i in other.tips()])
        common_names = frozenset(self_names.keys()) & \
                       frozenset(other_names.keys())
        common_names = list(common_names)

        if not common_names:
            raise ValueError, "No names in common between the two trees."""
        if len(common_names) <= 2:
            return 1    #the two trees must match by definition in this case

        if sample is not None:
            shuffle_f(common_names)
            common_names = common_names[:sample]
            
        self_nodes = [self_names[k] for k in common_names]
        other_nodes = [other_names[k] for k in common_names]

        self_matrix = self.tipToTipDistances(endpoints=self_nodes)[0]
        other_matrix = other.tipToTipDistances(endpoints=other_nodes)[0]

        return dist_f(self_matrix, other_matrix)

class TreeBuilder(object):
    # Some tree code which isn't needed once the tree is finished.
    # Mostly exists to give edges unique names
    # Children must be created before their parents.
    
    def __init__(self, mutable=False, constructor=PhyloNode):
        self._used_names = {'edge':-1}
        self._known_edges = {}
        self.TreeNodeClass = constructor
    
    def _unique_name(self, name):
        # Unnamed edges become edge.0, edge.1 edge.2 ...
        # Other duplicates go mouse mouse.2 mouse.3 ...
        if not name:
            name = 'edge'
        if name in self._used_names:
            self._used_names[name] += 1
            name += '.' + str(self._used_names[name])
            name = self._unique_name(name) # in case of names like 'edge.1.1'
        else:
            self._used_names[name] = 1
        return name
    
    def _params_for_edge(self, edge):
        # default is just to keep it
        return edge.params
    
    def edgeFromEdge(self, edge, children, params=None):
        """Callback for tree-to-tree transforms like getSubTree"""
        if edge is None:
            assert not params
            return self.createEdge(children, "root", {}, False)
        else:
            if params is None:
                params = self._params_for_edge(edge)
            return self.createEdge(
                    children, edge.Name, params, nameLoaded=edge.NameLoaded)
    
    def createEdge(self, children, name, params, nameLoaded=True):
        """Callback for newick parser"""
        if children is None:
            children = []
        node = self.TreeNodeClass(
                Children = list(children),
                Name = self._unique_name(name),
                NameLoaded = nameLoaded and (name is not None),
                Params = params,
                )
        self._known_edges[id(node)] = node
        return node