1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
|
#!/usr/bin/env python
import random, numpy
from cogent.core.alignment import Alignment
from cogent.util.dict_array import DictArrayTemplate
from cogent.evolve.simulate import AlignmentEvolver, randomSequence
from cogent.util import parallel, table
__author__ = "Gavin Huttley"
__copyright__ = "Copyright 2007-2009, The Cogent Project"
__credits__ = ["Gavin Huttley", "Andrew Butterfield", "Peter Maxwell",
"Matthew Wakefield", "Rob Knight", "Brett Easton"]
__license__ = "GPL"
__version__ = "1.4.1"
__maintainer__ = "Gavin Huttley"
__email__ = "gavin.huttley@anu.edu.au"
__status__ = "Production"
# cogent.evolve.parameter_controller.LikelihoodParameterController tells the
# recalculation framework to use this subclass rather than the generic
# recalculation Calculator. It adds methods which are useful for examining
# the parameter, psub, mprob and likelihood values after the optimisation is
# complete.
class LikelihoodFunction(object):
def setpar(self, param_name, value, edge=None, **scope):
# for tests only
return self.setParamRule(param_name, edge=edge, value=value, is_const=True, **scope)
def testfunction(self):
# for tests only
return self.getLogLikelihood()
def getParamValue(self, *args, **kw):
return self.real_par_controller.getParamValue(*args, **kw)
def getParamInterval(self, *args, **kw):
return self.real_par_controller.getParamInterval(*args, **kw)
def getParamValueDict(self, *args, **kw):
return self.real_par_controller.getParamValueDict(*args, **kw)
def getParamNames(self, *args, **kw):
return self.real_par_controller.getParamNames(*args, **kw)
def getUsedDimensions(self, param_name, **kw):
return self.real_par_controller.getUsedDimensions(param_name, **kw)
def getLogLikelihood(self):
return self.real_par_controller.getFinalResult()
def getNumFreeParams(self):
"""returns the number of free parameters."""
return self.real_par_controller.getNumFreeParams()
def getPsubForEdge(self, name):
array = self.getParamValue('psubs', edge=name)
return DictArrayTemplate(self._motifs, self._motifs).wrap(array)
def getFullLengthLikelihoods(self, locus=None):
# XXX These will not really be full length if MPI is
# being used!
if self.bin_names and len(self.bin_names) > 1:
root_lh = self.getParamValue('bindex', locus=locus)
root_lhs = [self.getParamValue('lh', locus=locus, bin=bin) for
bin in self.bin_names]
return root_lh.getFullLengthLikelihoods(*root_lhs)
else:
root_lht = self.getParamValue('root', locus=locus)
root_lh = self.getParamValue('lh', locus=locus)
return root_lht.getFullLengthLikelihoods(root_lh)
def reconstructAncestralSeqs(self, locus=None):
"""returns a dict of DictArray objects containing probabilities
of each alphabet state for each node in the tree.
Arguments:
- locus: a named locus"""
result = {}
array_template = None
for restricted_edge in self._tree.getEdgeVector():
if restricted_edge.istip():
continue
try:
r = []
for motif in range(len(self._motifs)):
self.setParamRule('fixed_motif', value=motif,
edge=restricted_edge.Name, locus=locus,
is_const=True)
likelihoods = self.getFullLengthLikelihoods(locus=locus)
r.append(likelihoods)
if array_template is None:
array_template = DictArrayTemplate(
likelihoods.shape[0], self._motifs)
finally:
self.setParamRule('fixed_motif', value=-1,
edge=restricted_edge.Name, locus=locus,
is_const=True)
# dict of site x motif arrays
result[restricted_edge.Name] = array_template.wrap(
numpy.transpose(numpy.asarray(r)))
return result
def likelyAncestralSeqs(self, locus=None):
"""Returns the most likely reconstructed ancestral sequences as an
alignment.
Arguments:
- locus: a named locus"""
prob_array = self.reconstructAncestralSeqs(locus=locus)
seqs = []
for edge, probs in prob_array.items():
seq = []
for row in probs:
by_p = [(p,state) for state, p in row.items()]
seq.append(max(by_p)[1])
seqs += [(edge, self.model.MolType.makeSequence("".join(seq)))]
return Alignment(data = seqs, MolType = self.model.MolType)
def getBinProbs(self, locus=None):
hmm = self.getParamValue('bindex', locus=locus)
lhs = [self.getParamValue('lh', locus=locus, bin=bin)
for bin in self.bin_names]
array = hmm.getPosteriorProbs(*lhs)
return DictArrayTemplate(self.bin_names, array.shape[1]).wrap(array)
def _valuesForDimension(self, dim):
# in support of __str__
if dim == 'edge':
result = [e.Name for e in self._tree.getEdgeVector()]
elif dim == 'bin':
result = self.bin_names[:]
elif dim == 'locus':
result = self.locus_names[:]
elif dim.startswith('motif'):
result = self._mprob_motifs
elif dim == 'position':
result = self.posn_names[:]
else:
raise KeyError, dim
return result
def _valuesForDimensions(self, dims):
# in support of __str__
result = [[]]
for dim in dims:
new_result = []
for r in result:
for cat in self._valuesForDimension(dim):
new_result.append(r+[cat])
result = new_result
return result
def __str__(self):
if not self._name:
title = 'Likelihood Function Table'
else:
title = self._name
result = [title]
result += self.getStatistics(with_motif_probs=True, with_titles=False)
return '\n'.join(map(str, result))
def getAnnotatedTree(self):
d = self.getStatisticsAsDict(with_parent_names=False)
tree = self._tree.deepcopy()
for edge in tree.getEdgeVector():
if edge.Name == 'root':
continue
for par in d:
edge.params[par] = d[par][edge.Name]
return tree
def getMotifProbs(self, edge=None, bin=None, locus=None):
motif_probs_array = self.getParamValue(
'mprobs', edge=edge, bin=bin, locus=locus)
return DictArrayTemplate(self._mprob_motifs).wrap(motif_probs_array)
#return dict(zip(self._motifs, motif_probs_array))
def getBinPriorProbs(self, locus=None):
bin_probs_array = self.getParamValue('bprobs', locus=locus)
return DictArrayTemplate(self.bin_names).wrap(bin_probs_array)
def getScaledLengths(self, predicate, bin=None, locus=None):
"""A dictionary of {scale:{edge:length}}"""
if not hasattr(self._model, 'getScaledLengthsFromQ'):
return {}
def valueOf(param, **kw):
return self.getParamValue(param, locus=locus, **kw)
if bin is None:
bin_names = self.bin_names
else:
bin_names = [bin]
if len(bin_names) == 1:
bprobs = [1.0]
else:
bprobs = valueOf('bprobs')
mprobs = [valueOf('mprobs', bin=b) for b in bin_names]
scaled_lengths = {}
for edge in self._tree.getEdgeVector():
if edge.isroot():
continue
Qs = [valueOf('Qd', bin=b, edge=edge.Name).Q for b in bin_names]
length = valueOf('length', edge=edge.Name)
scaled_lengths[edge.Name] = length * self._model.getScaleFromQs(
Qs, bprobs, mprobs, predicate)
return scaled_lengths
def getStatistics(self, with_motif_probs=True, with_titles=True):
"""returns the parameter values as tables/dict
Arguments:
- with_motif_probs: include the motif probability table
- with_titles: include a title for each table based on it's
dimension"""
result = []
group = {}
param_names = self.getParamNames()
mprob_name = [n for n in param_names if 'mprob' in n]
if mprob_name:
mprob_name = mprob_name[0]
else:
mprob_name = ''
if not with_motif_probs:
param_names.remove(mprob_name)
for param in param_names:
dims = tuple(self.getUsedDimensions(param))
if dims not in group:
group[dims] = []
group[dims].append(param)
table_order = group.keys()
for table_dims in table_order:
raw_table = self.getParamValueDict(
dimensions=table_dims, params=group[table_dims])
param_names = group[table_dims]
param_names.sort()
if table_dims == ('edge',):
if 'length' in param_names:
param_names.remove('length')
param_names.insert(0, 'length')
raw_table['parent'] = dict([(e.Name, e.Parent.Name)
for e in self._tree.getEdgeVector()
if not e.isroot()])
param_names.insert(0, 'parent')
list_table = []
heading_names = list(table_dims) + param_names
row_order = self._valuesForDimensions(table_dims)
for scope in row_order:
row = {}
row_used = False
for param in param_names:
d = raw_table[param]
try:
for part in scope:
d = d[part]
except KeyError:
d = 'NA'
else:
row_used = True
row[param] = d
if row_used:
row.update(dict(zip(table_dims, scope)))
row = [row[k] for k in heading_names]
list_table.append(row)
if table_dims:
title = ['', '%s params' % ' '.join(table_dims)][with_titles]
else:
title = ['', 'global params'][with_titles]
result.append(table.Table(
heading_names, list_table,
max_width = 80, row_ids = True,
title=title, **self._format))
return result
def getStatisticsAsDict(self, with_parent_names=True,
with_edge_names=False):
"""Returns a dictionary containing the statistics for each edge of the
tree, and any other information provided by the substitution model. The
dictionary is keyed at the top-level by parameter name, and then by
edge.name.
Arguments:
- with_edge_names: if True, an ordered list of edge names is
included under the top-level key 'edge.names'. Default is
False.
"""
stats_dict = self.getParamValueDict(['edge'])
if hasattr(self.model, 'scale_masks'):
for predicate in self.model.scale_masks:
stats_dict[predicate] = self.getScaledLengths(predicate)
edge_vector = [e for e in self._tree.getEdgeVector() if not e.isroot()]
# do the edge names
if with_parent_names:
parents = {}
for edge in edge_vector:
if edge.Parent.isroot():
parents[edge.Name] = "root"
else:
parents[edge.Name] = str(edge.Parent.Name)
stats_dict["edge.parent"] = parents
if with_edge_names:
stats_dict['edge.name'] = (
[e.Name for e in edge_vector if e.istip()] +
[e.Name for e in edge_vector if not e.istip()])
return stats_dict
# For tests. Compat with old LF interface
def setName(self, name):
self._name = name
def getName(self):
return self._name or 'unnamed'
def setTablesFormat(self, space=4, digits=4):
"""sets display properties for statistics tables. This affects results
of str(lf) too."""
space = [space, 4][type(space)!=int]
digits = [digits, 4][type(digits)!=int]
self._format = dict(space=space, digits=digits)
def getMotifProbsByNode(self, edges=None, bin=None, locus=None):
kw = dict(bin=bin, locus=locus)
mprobs = self.getParamValue('mprobs', **kw)
mprobs = self._model.calcWordProbs(mprobs)
result = self._nodeMotifProbs(self._tree, mprobs, kw)
if edges is None:
edges = [name for (name, m) in result]
result = dict(result)
values = [result[name] for name in edges]
return DictArrayTemplate(edges, self._mprob_motifs).wrap(values)
def _nodeMotifProbs(self, tree, mprobs, kw):
result = [(tree.Name, mprobs)]
for child in tree.Children:
psub = self.getParamValue('psubs', edge=child.Name, **kw)
child_mprobs = numpy.dot(mprobs, psub)
result.extend(self._nodeMotifProbs(child, child_mprobs, kw))
return result
def simulateAlignment(self, sequence_length=None, random_series=None,
exclude_internal=True, locus=None, seed=None, root_sequence=None):
"""
Returns an alignment of simulated sequences with key's corresponding to
names from the current attached alignment.
Arguments:
- sequence_length: the legnth of the alignment to be simulated,
default is the length of the attached alignment.
- random_series: a random number generator.
- exclude_internal: if True, only sequences for tips are returned.
- root_sequence: a sequence from which all others evolve.
"""
if sequence_length is None:
lht = self.getParamValue('lht', locus=locus)
sequence_length = len(lht.index)
leaves = self.getParamValue('leaf_likelihoods', locus=locus)
orig_ambig = {} #alignment.getPerSequenceAmbiguousPositions()
for (seq_name, leaf) in leaves.items():
orig_ambig[seq_name] = leaf.getAmbiguousPositions()
else:
orig_ambig = {}
mprobs = self.getParamValue('mprobs',locus=locus)
mprobs = self._model.calcWordProbs(mprobs)
mprobs = dict((m, p) for (m,p) in zip(self._motifs, mprobs))
if random_series is None:
random_series = random.Random()
random_series.seed(seed)
parallel.sync_random(random_series)
def psub_for(edge, bin):
return self.getParamValue('psubs',
edge=edge, bin=bin, locus=locus)
if len(self.bin_names) > 1:
hmm = self.getParamValue('bdist', locus=locus)
site_bins = hmm.emit(sequence_length, random_series)
else:
site_bins = numpy.zeros([sequence_length], int)
evolver = AlignmentEvolver(random_series, orig_ambig, exclude_internal,
self.bin_names, site_bins, psub_for, self._motifs)
if root_sequence is not None: # we convert to a vector of motifs
if isinstance(root_sequence, str):
root_sequence = self._model.MolType.makeSequence(root_sequence)
motif_len = self._model.getAlphabet().getMotifLen()
root_sequence = root_sequence.getInMotifSize(motif_len)
else:
root_sequence = randomSequence(
random_series, mprobs, sequence_length)
simulated_sequences = evolver(self._tree, root_sequence)
return Alignment(
data = simulated_sequences,
MolType = self._model.MolType)
|