File: matrix_exponentiation.py

package info (click to toggle)
python-cogent 1.4.1-1.2
  • links: PTS, VCS
  • area: non-free
  • in suites: squeeze
  • size: 13,260 kB
  • ctags: 20,087
  • sloc: python: 116,163; ansic: 732; makefile: 74; sh: 9
file content (263 lines) | stat: -rw-r--r-- 8,347 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#!/usr/bin/env python
# 4 implementations of P = exp(Q*t)
# APIs along the lines of:
#   exponentiator = WhateverExponenentiator(Q or Q derivative(s))
#   P = exponentiator(t)
#
#           Class(Q)     instance(t)       Limitations
# Eigen      slow           fast           not too asymm
# SemiSym    slow           fast           mprobs > 0
# Pade       instant        slow
# Taylor     instant        very slow

from cogent.util.modules import importVersionedModule, ExpectedImportError
import numpy
Float = numpy.core.numerictypes.sctype2char(float)
from numpy.linalg import inv as _inv, eig as _eig,\
                        solve as solve_linear_equations, LinAlgError

import logging
LOG = logging.getLogger('cogent.maths.exponentiation')

__author__ = "Peter Maxwell"
__copyright__ = "Copyright 2007-2009, The Cogent Project"
__credits__ = ["Peter Maxwell", "Gavin Huttley", "Zongzhi Liu"]
__license__ = "GPL"
__version__ = "1.4.1"
__maintainer__ = "Gavin Huttley"
__email__ = "gavin.huttley@anu.edu.au"
__status__ = "Production"

def eig(*a, **kw):
    """make eig to return the same eigvectors as numpy ones"""
    vals, vecs = _eig(*a, **kw)
    return vals, vecs.T
    
def inv(a):
    """make inv return the same contiguous matrix as numpy one"""
    return numpy.ascontiguousarray(_inv(a))

def inv(a):
    """make inv return the same contiguous matrix as numpy one"""
    return numpy.ascontiguousarray(_inv(a))

try:
    pyrex = importVersionedModule('_matrix_exponentiation', globals(),
            (1, 2), LOG, "pure Python/NumPy exponentiation")
except ExpectedImportError:
    pyrex = None
else:
    pyrex.setNumPy(numpy)
    if pyrex.version_info == (1, 2):
        def _pyrex_eigenvectors(q, orig=pyrex.eigenvectors):
            try:
                return orig(q)
            except RuntimeError, detail:
                raise ArithmeticError, detail
        pyrex.eigenvectors = _pyrex_eigenvectors

class _Exponentiator(object):
    def __init__(self, Q):
        self.Q = Q
    
    def __repr__(self):
        return "%s(%s)" % (self.__class__.__name__, repr(self.Q))
    

class EigenExponentiator(_Exponentiator):
    """A matrix ready for fast exponentiation.  P=exp(Q*t)"""
    
    __slots__ = ['Q', 'ev', 'roots', 'evI', 'evT']
    
    def __init__(self, Q, roots, ev, evI=None):
        self.Q = Q
        if evI is None:
            evI = inv(ev)
        self.evI = evI
        self.evT = numpy.transpose(ev)
        self.ev = ev
        self.roots = roots
    
    def __call__(self, t):
        exp_roots = numpy.exp(t*self.roots)
        result = numpy.inner(self.evT * exp_roots, self.evI)
        if result.dtype.kind == "c":
            result = numpy.asarray(result.real)
        result = numpy.maximum(result, 0.0)
        return result
    

def SemiSymmetricExponentiator(motif_probs, Q, ex):
    """Like EigenExponentiator, but more numerically stable and
    30% faster when the rate matrix (Q/motif_probs) is symmetrical.
    Only usable when all motif probs > 0.  Unlike the others
    it needs to know the motif probabilities."""
    
    H = numpy.sqrt(motif_probs)
    H2 = numpy.divide.outer(H, H)
    #A = Q * H2
    #assert numpy.allclose(A, numpy.transpose(A)), A
    (roots, R) = ex.eigenvectors(Q*H2)
    ev = R / H2
    evI = numpy.transpose(R*H2)
    #self.evT = numpy.transpose(self.ev)
    return ex.exponentiator(Q, roots, ev, evI)


# These next two are slow exponentiators, they don't get any speed up
# from reusing Q with a new t, but for compatability with the diagonalising
# approach they look like they do.  They are derived from code in SciPy.

class TaylorExponentiator(_Exponentiator):
    def __init__(self, Q):
        self.Q = Q
        self.q = 21
    
    def __call__(self, t=1.0):
        """Compute the matrix exponential using a Taylor series of order q."""
        A = self.Q * t
        M = A.shape[0]
        eA = numpy.identity(M, Float)
        trm = eA
        for k in range(1, self.q):
            trm = numpy.dot(trm, A/float(k))
            eA += trm
        while not numpy.allclose(eA, eA-trm):
            k += 1
            trm = numpy.dot(trm, A/float(k))
            eA += trm
        if k >= self.q:
            LOG.warning("Taylor series lengthened from %s to %s" % (self.q, k+1))
            self.q = k + 1
        return eA
    

class PadeExponentiator(_Exponentiator):
    def __init__(self, Q):
        self.Q = Q
    
    def __call__(self, t=1.0):
        """Compute the matrix exponential using Pade approximation of order q.
        """
        A = self.Q * t
        M = A.shape[0]
        # Scale A so that norm is < 1/2
        norm = numpy.maximum.reduce(numpy.sum(numpy.absolute(A), axis=1))
        j = int(numpy.floor(numpy.log(max(norm, 0.5))/numpy.log(2.0))) + 1
        A = A / 2.0**j
        
        # How many iterations required
        e = 1.0
        q = 0
        qf = 1.0
        while e > 1e-12:
            q += 1
            q2 = 2.0 * q
            qf *= q**2 / (q2 * (q2-1) * q2 * (q2+1))
            e = 8 * (norm/(2**j))**(2*q) * qf
        
        # Pade Approximation for exp(A)
        X = A
        c = 1.0/2
        N = numpy.identity(M) + c*A
        D = numpy.identity(M) - c*A
        for k in range(2,q+1):
            c = c * (q-k+1) / (k*(2*q-k+1))
            X = numpy.dot(A,X)
            cX = c*X
            N = N + cX
            if not k % 2:
                D = D + cX;
            else:
                D = D - cX;
        F = solve_linear_equations(D,N)
        for k in range(1,j+1):
            F = numpy.dot(F,F)
        return F
    

import time
def _fastest(fs, *args):
    if len(fs) == 1:
        i = 0
    else:
        es = [[] for f in fs]
        samples = 0
        while samples < 10:
            for (f, e) in zip(fs, es):
                t0 = time.time()
                f(*args)
                t1 = time.time()
                e.append(t1-t0)
            samples += 1
        
        m = []
        for e in es:
            e.sort()
            m.append(e[samples/2])
        i = numpy.argmin(m, -1)
    return (fs[i], fs[i](*args))

def _chooseFastExponentiators(Q):
    if pyrex is not None:
        eigen_candidates = [eig, pyrex.eigenvectors]
        (eigenvectors, (roots,ev)) = _fastest(eigen_candidates, Q)
        inverse_candidates = [inv, pyrex.inverse]
        (inverse, evI) = _fastest(inverse_candidates, ev)
        exponentiator_candidates = [EigenExponentiator(Q, roots, ev, evI)]
        if roots.dtype.kind == 'f':
            assert ev.dtype.kind == 'f'
            pyx = pyrex.EigenExponentiator(Q, roots, ev, evI)
            exponentiator_candidates.append(pyx)
        (exponentiator, P) = _fastest(exponentiator_candidates, 1.1)
        FastestExponentiator = type(exponentiator)
    else:
        eigenvectors = eig
        inverse = inv
        FastestExponentiator = EigenExponentiator
    
    # FastestExponentiator may be the pyrex Exponentiator which
    # doesn't cope with complex inputs
    e_class = {'c': EigenExponentiator, 'f':FastestExponentiator}
    
    def Exp(Q, e_class=e_class):
        (roots, ev) = eigenvectors(Q)
        return e_class[roots.dtype.kind](Q, roots, ev, inverse(ev))
    
    def Exp2(Q, e_class=e_class):
        (roots, ev) = eigenvectors(Q)
        evI = inverse(ev)
        reQ = numpy.inner(ev.T * roots, evI).real
        if not numpy.allclose(Q, reQ):
            raise ArithmeticError, "eigen failed precision test"
        return e_class[roots.dtype.kind](Q, roots, ev, evI)
    
    # These function attributes are just for log / debug etc.
    Exp.eigenvectors = eigenvectors
    Exp.inverse = inverse
    Exp.exponentiator = FastestExponentiator
    
    return (Exp, Exp2)

def chooseFastExponentiators(Q):
    ex = _chooseFastExponentiators(Q)
    LOG.info('Strategy for Q Size %s: PyrexEig:%s PyrexInv:%s PyrexExp:%s'
        % (
        Q.shape[0],
        (ex[0].eigenvectors is not eig),
        (ex[0].inverse is not inv),
        (ex[0].exponentiator is not EigenExponentiator)))
    return ex

def FastExponentiator(Q):
    size = Q.shape[0]
    if pyrex is not None and size < 32:
        (roots, ev) = pyrex.eigenvectors(Q)
    else:
        (roots, ev) = eig(Q)
    ex = EigenExponentiator(Q, roots, ev)
    return ex

def RobustExponentiator(Q):
    return PadeExponentiator(Q)