1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
#!/usr/bin/env python
"""
Simulated annealing optimiser. Derives from basic optimiser class.
The simulated annealing optimiser is a translation into Python of the fortran
program simman.f authored by Bill Goffe (bgoffe@whale.st.usm.edu). The original
citation is "Global Optimization of Statistical Functions with Simulated
Annealing," Goffe, Ferrier and Rogers, Journal of Econometrics, vol. 60, no. 1/2,
Jan./Feb. 1994, pp. 65-100.
"""
from optimiser import OptimiserBase
import numpy
Float = numpy.core.numerictypes.sctype2char(float)
import time
__author__ = "Andrew Butterfield"
__copyright__ = "Copyright 2007-2009, The Cogent Project"
__credits__ = ["Gavin Huttley", "Andrew Butterfield", "Peter Maxwell"]
__license__ = "GPL"
__version__ = "1.4.1"
__maintainer__ = "Gavin Huttley"
__email__ = "gavin.huttley@anu.edu.au"
__status__ = "Production"
class AnnealingSchedule(object):
"""Responsible for the shape of the simulated annealing temperature profile"""
def __init__(self, temp_reduction, initial_temp, temp_iterations, step_cycles):
if initial_temp < 0.0 :
raise RuntimeError, "Initial temperature not +ve"
self.T = self.initial_temp = initial_temp
self.temp_reduction = temp_reduction
self.temp_iterations = temp_iterations
self.step_cycles = step_cycles
self.dwell = temp_iterations * step_cycles
def checkSameConditions(self, other):
for attr in ['temp_reduction', 'initial_temp', 'temp_iterations', 'step_cycles']:
if getattr(self, attr) != getattr(other, attr):
raise ValueError('Checkpoint file ignored - %s different' % attr)
def cool(self):
self.T = self.temp_reduction * self.T
def willAccept(self, newF, oldF, random_series):
deltaF = newF - oldF
return deltaF >= 0 or random_series.uniform(0.0, 1.0) < numpy.exp(deltaF / self.T)
class AnnealingHistory(object):
"""Keeps the last few results, for convergence testing"""
def __init__(self, sample=4):
self.values = [None] * sample
self.i = 0
def note(self, F):
self.values[self.i] = F
self.i = (self.i + 1) % len(self.values)
def hasConverged(self, tolerance):
return None not in self.values and max(self.values) - min(self.values) < tolerance
class AnnealingState(object):
def __init__(self, X, function, random_series):
self.random_series = random_series
self.NFCNEV = 1
self.VM = numpy.ones(len(X), Float)
self.setX(X, function(X))
(self.XOPT, self.FOPT) = (X, self.F)
self.NACP = [0] * len(X)
self.NTRY = 0
self.elapsed_time = 0
def setX(self, X, F):
self.X = numpy.array(X, Float)
self.F = F
def step(self, function, accept_test):
# One attempted move in each dimension
t0 = time.time()
X = self.X
self.NTRY += 1
for H in range(len(X)):
self.NFCNEV += 1
current_value = X[H]
X[H] += self.VM[H] * self.random_series.uniform(-1.0, 1.0)
F = function(X)
if accept_test(F, self.F, self.random_series):
self.NACP[H] += 1
self.F = F
if F > self.FOPT:
(self.FOPT, self.XOPT) = (F, X.copy())
else:
X[H] = current_value
self.elapsed_time += time.time() - t0
def adjustStepSizes(self):
# Adjust velocity in each dimension to keep acceptance ratios near 50%
if self.NTRY == 0:
return
for I in range(len(self.X)):
RATIO = (self.NACP[I]*1.0) / self.NTRY
if RATIO > 0.6:
self.VM[I] *= (1.0 + (2.0 * ((RATIO-0.6)/0.4)))
elif RATIO < 0.4:
self.VM[I] /= (1.0 + (2.0 * ((0.4 - RATIO)/0.4)))
self.NACP[I] = 0
self.NTRY = 0
class AnnealingRun(object):
def __init__(self, function, X, schedule, random_series):
self.history = AnnealingHistory()
self.schedule = schedule
self.state = AnnealingState(X, function, random_series)
self.test_count = 0
def checkFunction(self, function, xopt, checkpointing_filename):
if len(xopt) != len(self.state.XOPT):
raise ValueError(
"Number of parameters in checkpoint file '%s' (%s) " \
"don't match current function (%s)" % (
checkpointing_filename, len(self.state.XOPT), len(xopt)))
# if f(x) != g(x) then f isn't g.
then = self.state.FOPT
now = function(self.state.XOPT)
if not numpy.allclose(now, then, 1e-8):
raise ValueError(
"Function to optimise doesn't match checkpoint file " \
"'%s': F=%s now, %s in file." % (
checkpointing_filename, now, then))
def run(self, function, tolerance, max_iterations, checkpointer,
show_progress):
state = self.state
history = self.history
schedule = self.schedule
while not history.hasConverged(tolerance):
if show_progress:
print "Outer loop = %d" % self.test_count
self.save(checkpointer)
for i in range(self.schedule.dwell):
state.step(function, self.schedule.willAccept)
self.test_count += 1
if max_iterations and self.test_count >= max_iterations:
raise MaximumEvaluationsReached(state)
if self.test_count % schedule.step_cycles == 0:
state.adjustStepSizes()
history.note(state.F)
if show_progress:
print "\tF = %f EVALS = %s" % (state.FOPT, state.NFCNEV)
state.setX(state.XOPT, state.FOPT)
schedule.cool()
self.save(checkpointer, final=True)
return state
def save(self, checkpointer, final=False):
msg = "Number of function evaluations = %d; current F = %s" % \
(self.state.NFCNEV, self.state.FOPT)
checkpointer.record(self, msg, final)
class MaximumEvaluationsReached(Exception):
# Used to pass out the results when iteration has to stop early
"""FORCED EXIT from SimulatedAnnealing:
Too many function evaluations, results are likely to be poor.
You can increase max_evaluations or decrease tolerance."""
class SimulatedAnnealing(OptimiserBase):
"""Simulated annealing optimiser for bounded functions
"""
# this is a maximiser
algorithm_direction = +1
def _setdefaults(self):
"""set all the conditions for the sim annealing algorithm to default values"""
self.setConditions(tolerance = 1E-6, temp_reduction = 0.5, init_temp=5.0,
temp_iterations = 5, step_cycles = 20, max_evaluations=1e100)
def setConditions(self, tolerance = None, temp_reduction = None, init_temp=None,
temp_iterations = None, step_cycles = None, max_evaluations=None):
"""Set the conditions that control the optimisation.
Arguments:
- tolerance: the error condition for termination, default is
1E-6
- temp_reduction: the factor by which the annealing
"temperature" is reduced, default is 0.5
- temp_iterations: the number of iterations before a
temperature reduction, default is 5
- step_cycles: the number of cycles after which the step size
is modified, default is 20
- max_evaluations: the maximum number of function
evaluations, default is 1E100. Note that a full run across
the vector will be always be performed, with the outcome that
the program will excape number of evaluations is greater than
or equal to max_evaluations.
"""
for (attr, value) in locals().items():
if value is not None:
setattr(self, attr, value)
def runInner(self, function, xopt, show_progress, random_series):
"""Optimise the vector within the bounds specified by the base class.
Arguments:
- show_progress: whether the function values are printed as
the optimisation proceeds. Default is True.
Returns function value, parameter vector, evaluation count
"""
if len(xopt) == 0:
return function(xopt), xopt, 0, 0.0
schedule = AnnealingSchedule(
self.temp_reduction, self.init_temp, self.temp_iterations, self.step_cycles)
max_iterations = (self.max_evaluations-1) / len(xopt) + 1
if self.restore and self.checkpointer.available():
run = self.checkpointer.load()
run.checkFunction(function, xopt, self.checkpointer.filename)
run.schedule.checkSameConditions(schedule)
else:
run = AnnealingRun(function, xopt, schedule, random_series)
self.restore = False
try:
result = run.run(
function,
self.tolerance,
max_iterations,
checkpointer = self.checkpointer,
show_progress = show_progress)
except MaximumEvaluationsReached, detail:
print detail.__doc__
result = detail.args[0]
return result.FOPT, result.XOPT, result.NFCNEV, result.elapsed_time
|