File: birth_death.py

package info (click to toggle)
python-cogent 1.4.1-1.2
  • links: PTS, VCS
  • area: non-free
  • in suites: squeeze
  • size: 13,260 kB
  • ctags: 20,087
  • sloc: python: 116,163; ansic: 732; makefile: 74; sh: 9
file content (700 lines) | stat: -rw-r--r-- 27,794 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
#!/usr/bin/env python
"""
Code for birth-death (Yule) processes for simulating phylogenetic trees.

Also contains a double birth-death model for simulating horizontal gene transfer
histories (not yet tested).

"Production" status only applies to the single birth-death model.
"""

from cogent.seqsim.tree import RangeNode
from random import random

__author__ = "Rob Knight"
__copyright__ = "Copyright 2007-2009, The Cogent Project"
__credits__ = ["Rob Knight", "Mike Robeson"]
__license__ = "GPL"
__version__ = "1.4.1"
__maintainer__ = "Rob Knight"
__email__ = "rob@spot.colorado.edu"
__status__ = "Production"

class ExtinctionError(Exception): pass
class TooManyTaxaError(Exception): pass

class BirthDeathModel(object):
    """Creates trees using a birth-death model.

    Initialize with timestep, birth prob, death prob.

    This class only produces the trees (using RangeNode); these trees already
    know how to evolve sequences, set rate matrices, etc.

    The trees returned will include lengths for each branch.

    WARNING: Sometimes, the ancestral node will die off, or that all the nodes
    will die off later. If that happens, an ExtinctionError will be raised.
    """
    NodeClass = RangeNode

    def __init__(self, BirthProb, DeathProb, TimePerStep, ChangedBirthProb=None, \
            ChangedDeathProb=None, ChangedBirthStep=None, ChangedDeathStep=None, \
            MaxStep=1000, MaxTaxa=None):
        """Returns a new BirthDeathModel object.

        BirthProb: probability that a node will split in timestep.
        DeathProb: probability that a node will die in timestep.
        TimePerStep: branch length (sequence distance units) for each step.
        ChangedBirthProb: new BirthProb to be set at the time step specified
                            in ChangedBirthStep.
        ChangedDeathProb: new DeathProb to be set at the time step specified
                            in ChangedDeathStep.
        ChangedBirthStep: time step at which the ChangedBirthProb is set.
        ChangedDeathStep: time step at which the ChangedDeathProb is set.
        MaxStep: maximum time step before stopping. Default 1000.
        MaxTaxa: maximum taxa before stopping. Default None.
        
        Sets CurrStep to 0 at the beginning to measure elapsed time.

        Note: if both a birth and a death occur in the same timestep, they
        will be ignored.

        WARNING: If neither MaxStep nor MaxTaxa is set, the simulation will keep
        going until all nodes are extinct, or you run out of memory!
        """
        self.CurrStep = 0
        self.BirthProb = BirthProb
        self.DeathProb = DeathProb 
        self.TimePerStep = float(TimePerStep)
        self.ChangedBirthProb = self.prob_check(ChangedBirthProb)
        self.ChangedBirthStep = self.step_check(ChangedBirthStep)
        self.ChangedDeathProb = self.prob_check(ChangedDeathProb)
        self.ChangedDeathStep = self.step_check(ChangedDeathStep)
        self.CurrDeathProb = DeathProb
        self.CurrBirthProb = BirthProb
        self.MaxStep = MaxStep
        self.MaxTaxa = MaxTaxa
        if TimePerStep <= 0:
            raise ValueError, "TimePerStep must be greater than zero"
        if not (0 <= BirthProb <= 1) or not (0 <= DeathProb <= 1):
            raise ValueError, "Birth and death probs must be between 0 and 1"
        #self.CurrStep = 0
        self.Tree = self.NodeClass()
        self.CurrTaxa = [self.Tree]

    def prob_check(self,prob_value):
        """Checks if prabability value lies between 0 and 1"""
        if prob_value is not None:
            if not (0 <= prob_value <= 1):
                raise ValueError, "\'prob_value\'  must be between 0 and 1"
            else:
                return prob_value
        else:
            return None
        
    def step_check(self,step_value):
        """Checks to see if value is greater than zero"""
        if step_value is not None:
            if step_value <= 0:
                raise ValueError, "\'stop_value\' must be greater than zero"
            else:
                return step_value
        else:
            return None
    
    def timeOk(self):
        """Return True only if the maximum time has not yet been reached."""
        #If MaxStep is not set, never say that the maximum time was reached
        if self.MaxStep is None:
            return True
        else:
            return self.CurrStep < self.MaxStep

    def taxaOk(self):
        """Returns True if the number of taxa is > 0 and < self.MaxTaxa.
        
        Note: MaxTaxa is exclusive (i.e. if MaxTaxa is 32, taxaOk will return
        False when the number of taxa is exactly 32, allowing you to stop when
        this number is reached).
        """
        num_taxa = len(self.CurrTaxa)
        if num_taxa < 1:
            return False
        if self.MaxTaxa is not None:
            return num_taxa < self.MaxTaxa
        #otherwise, if self.MaxTaxa was not set, any number is OK since we 
        #know we have at least item in the list or we wouldn't have got here.
        else:
            return True
    
    def B_Prob(self):
        """Checks to see if Birth probability changes during a time step.

        If target time step is defined and met, the new birth prob will 
        take affect from that point onward.
        """
        if self.ChangedBirthStep is None:
            return self.BirthProb
        else:
            if self.CurrStep < self.ChangedBirthStep:
                return self.BirthProb
            else:
                try:
                    self.CurrBirthProb = self.ChangedBirthProb
                    return self.ChangedBirthProb
                except ValueError: 'ChangedBirthProb value is \'None\''

    def D_Prob(self):
        """Checks to see if Death probability changes during a time step.

        If target time step is defined and met, the new death prob will 
        take affect from that point onward.
"""
        if self.ChangedDeathStep is None:
            return self.DeathProb
        else:
            if self.CurrStep < self.ChangedDeathStep:
                return self.DeathProb
            else:
                try:
                    self.CurrDeathProb = self.ChangedDeathProb
                    return self.ChangedDeathProb
                except ValueError: 'ChangedDeathProb value is \'None\''

    def step(self, random_f=random):
        """Advances the state of the object by one timestep.

        Specifically:
        
        For each node in the current taxa, decides whether it's going to
        produce a birth or a death.
        
        If a node dies, delete it from the list of current taxa.

        If a node gives birth, add two child nodes to the list of current
        taxa each with branchlength equal to the timestep, and delete the
        original node from the list of taxa.

        Otherwise, add the timestep to the node's branchlength.
        """
        #create list of new current nodes
        b = self.B_Prob()
        d = self.D_Prob()
        nc = self.NodeClass
        ts = self.TimePerStep
        new_list = []
        for node in self.CurrTaxa:
            died = random_f() < d
            born = random_f() < b
            #need to duplicate only if it was born and one didn't die
            if (born and not died):
                first_child = nc()
                second_child = nc()
                children = [first_child, second_child]
                #remember, we need to take care of both parent and child 
                #refs manually unless the tree class does it for us
                node.Children = children
                first_child.Parent = node
                second_child.Parent = node
                new_list.extend(children)
            elif (died and not born):
                #don't add the dead node to the new list
                continue
            else:   #i.e. if born and died, or if nothing happened
                new_list.append(node)
        #update time steps
        for node in new_list:
            if hasattr(node, 'Length') and node.Length is not None:
                node.Length += ts
            else:
                node.Length = ts
        self.CurrStep += 1
        #set the list of current nodes to the new list
        self.CurrTaxa = new_list

    def __call__(self, filter=True, exact=False, random_f=random):
        """Returns a new tree using params in self.
        
        If filter is True (the default), gets rid of extinct lineages.

        If exact is True (default is False), raises exception if we didn't
        get the right number of taxa

        WARNING: Because multiple births can happen in the same timestep, you
        might get more than the number of taxa you specify. Check afterwards!
        """
        self.CurrStep = 0
        self.Tree = self.NodeClass()
        self.CurrTaxa = [self.Tree]
        while 1:
            self.step(random_f)
            if not(self.timeOk() and self.taxaOk()):
                break

        if not self.CurrTaxa:
            raise ExtinctionError, "All taxa are extinct."
        if filter:
            self.Tree.filter(self.CurrTaxa, keep=True)
        if exact and self.MaxTaxa and (len(self.CurrTaxa) != self.MaxTaxa):
            raise TooManyTaxaError, "Got %s taxa, not %s." % \
                (len(self.CurrTaxa), self.MaxTaxa)
        return self.Tree

class GeneNode(RangeNode):
    """Holds a phylogenetic node that corresponds to a gene.

    Specificially, needs Species property holding ref to its species.

    WARNING: the current implementation does not take Species in __init__,
    but assumes you will create it manually after you make the node.
    """
    pass

class SpeciesNode(RangeNode):
    """Holds a phylogenetic node that corresponds to a species.

    Specifically, needs a Genes property that holds refs to its genes.
    
    WARNING: the current implementation does not take Genes in __init__,
    but assumes you will create it manually after you make the node.
    """
    pass

class DoubleBirthDeathModel(object):
    """Creates species and gene trees using a double birth-death model.

    Initialize with timestep, birth prob, death prob.

    This class only produces the trees (using RangeNode); these trees already
    know how to evolve sequences, set rate matrices, etc.

    The trees returned will include lengths for each branch.

    WARNING: Sometimes, the ancestral node will die off, or that all the nodes
    will die off later. If that happens, an ExtinctionError will be raised.
    """
    GeneClass = GeneNode
    SpeciesClass = SpeciesNode

    def __init__(self, GeneBirth, GeneDeath, GeneTransfer, SpeciesBirth, \
            SpeciesDeath, SpeciesRateChange, TimePerStep, GenesAtStart, \
            MaxStep=1000, MaxGenes=None, MaxSpecies=None, MaxGenome=None,
            DEBUG=False):
        """Returns a new BirthDeathModel object.

        GeneBirth: f(val, gene) returning True if gene is born given seed val.
        
        GeneDeath: f(val, gene) returning True if gene dies given seed val.
        
        GeneTransfer: f(val, gene) returning species that gene transfers to (or 
        None if no trransfer.)

        SpeciesBirth: f(val, species) returning True if species splits.
        
        SpeciesDeath: f(val, species) returning True if species dies.
        
        SpeciesRateChange: f(val, species) resetting species rate matrix given
        val.
        
        NOTE: in current implementation, Q only changes when species duplicates.
        
        TimePerStep: branch length (sequence distance units) for each step.
        GenesAtStart: number of genes at the beginning of the simulation.
        
        MaxStep: maximum time step before stopping. Default 1000.
        MaxGenes: maximum genes before stopping. Default None.
        MaxSpecies: maximum species before stopping. Default None.
        MaxGenome: maximum number of genes in a genome. Default None.
        
        Sets CurrStep to 0 at the beginning to measure elapsed time.

        Note: if both a birth and a death occur in the same timestep, they
        will be ignored.

        WARNING: If neither MaxStep nor MaxTaxa is set, the simulation will keep
        going until all nodes are extinct, or you run out of memory!
        """
        self.GeneBirth = GeneBirth 
        self.GeneDeath = GeneDeath
        self.GeneTransfer = GeneTransfer
        self.SpeciesBirth = SpeciesBirth
        self.SpeciesDeath = SpeciesDeath
        self.SpeciesRateChange = SpeciesRateChange
        self.TimePerStep = TimePerStep
        self.GenesAtStart = GenesAtStart
        self.MaxStep = MaxStep
        self.MaxGenes = MaxGenes
        self.MaxSpecies = MaxSpecies
        self.MaxGenome = MaxGenome
        self.DEBUG = DEBUG
        if TimePerStep <= 0:
            raise ValueError, "TimePerStep must be greater than zero"
        self._init_vars()

    def _init_vars(self):
        """Initialize vars before running the simulation."""
        self.CurrStep = 0
        self.SpeciesTree = self.SpeciesClass()
        self.SpeciesTree.Length = 0
        self.SpeciesTree.BirthDeathModel = self
        self.CurrSpecies = [self.SpeciesTree]
        self.SpeciesTree.CurrSpecies = self.CurrSpecies #ref to same object
        self.GeneTrees = [self.GeneClass() for i in range(self.GenesAtStart)]
        for i in self.GeneTrees:
            i.Length = 0
            i.BirthDeathModel = self
        self.CurrGenes = self.GeneTrees[:]

        #set gene/species references
        for i in self.CurrGenes:
            i.Species = self.SpeciesTree
        self.SpeciesTree.Genes = self.CurrGenes[:]  
        #note: copy of CurrGenes list, not reference

    def timeOk(self):
        """Return True only if the maximum time has not yet been reached."""
        #If MaxStep is not set, never say that the maximum time was reached
        if self.MaxStep is None:
            return True
        else:
            return self.CurrStep < self.MaxStep

    def genesOk(self):
        """Returns True if the number of genes is > 0 and < self.MaxGenes.
        
        Note: MaxGenes is exclusive (i.e. if MaxGenes is 32, genesOk will return
        False when the number of genes is exactly 32, allowing you to stop when
        this number is reached).
        """
        num_taxa = len(self.CurrGenes)
        if num_taxa < 1:
            return False
        if self.MaxGenes is not None:
            return num_taxa < self.MaxGenes
        #otherwise, if self.MaxTaxa was not set, any number is OK since we 
        #know we have at least item in the list or we wouldn't have got here.
        else:
            return True
        
    def speciesOk(self):
        """Returns True if the number of species is > 0 and < self.MaxSpecies.
        
        Note: MaxSpecies is exclusive (i.e. if MaxSpecies is 32, speciesOk 
        will return False when the number of species is exactly 32, allowing 
        you to stop when this number is reached).
        """
        num_taxa = len(self.CurrSpecies)
        if num_taxa < 1:
            return False
        if self.MaxSpecies is not None:
            return num_taxa < self.MaxSpecies
        #otherwise, if self.MaxTaxa was not set, any number is OK since we 
        #know we have at least item in the list or we wouldn't have got here.
        else:
            return True

    def genomeOk(self):
        """Returns True if the max genome size is < self.MaxGenome.
        
        Note: MaxGenome is exclusive (i.e. if MaxGenome is 32, genomeOk will 
        return False when the max genome size is exactly 32, allowing you to 
        stop when this number is reached).
        """
        max_taxa = max([len(i.Genes) for i in self.CurrSpecies])
        if num_taxa < 1:
            return False
        if self.MaxGenome is not None:
            return num_taxa < self.MaxGenome
        #otherwise, if self.MaxTaxa was not set, any number is OK since we 
        #know we have at least item in the list or we wouldn't have got here.
        else:
            return True

    def geneStep(self, random_f=random):
        """Advances the state of the genes by one timestep (except speciation).

        Specifically:
        
        Decides whether each gene will die, duplicate, or transfer.
        
        If a gene dies, delete it from the list of current genes.

        If a gene gives birth, add two child nodes to the list of current
        genes each with zero branchlength (will increment later), and delete the
        original node from the list of genes.

        If a gene transfers, handle like birth but also change the species.

        WARNING: This method does not increment the branch length or the time 
        counter. Handle separately!
        """
        #create list of new current nodes
        #Too complex to do combinations of states. Use three-pass algorithm:
        #1. birth
        #2. transfer
        #3. death
        #i.e. each copy gets a separate chance at death after it is made.
        #note that this differs slightly from what we do in the single
        #birth-death model where each original gene gets a chance at death
        #and a death and a duplication just cancel. Is this a problem with
        #the original model?
        self._gene_birth_step(random_f)
        self._gene_transfer_step(random_f)
        self._gene_death_step(random_f)

    def _duplicate_gene(self, gene, orig_species, new_species=None, \
        new_species_2=None):
        """Duplicates a gene, optionally attaching to new species.

        When called with only orig_species, duplicates the gene in the same 
        species (killing the old gene and making two copies).
        
        When called with orig_species and new_species, kills the old gene and 
        puts one new child into each of the old and new species (i.e. for
        horizontal gene transfer).

        When called with orig_species, new_species, and new_species_2, kills
        the old gene and puts one new child into each of the two new species
        (i.e. for speciation where all genes duplicate into new species).
        
        WARNING: Does not update self.CurrGenes (so can use in loop, but
        must update self.CurrGenes manually)."""
        
        gc = self.GeneClass
        #make new children
        first_child, second_child = gc(), gc()
        children = [first_child, second_child]
        #update gene parent/child refs
        gene.Children = children
        first_child.Parent = gene
        second_child.Parent = gene
        #init branch lengths
        first_child.Length = 0
        second_child.Length = 0
        #update species refs
        #first, figure out which species to deal with
        if new_species is None:   #add both to orig species
            first_species = orig_species
            second_species = orig_species
        elif new_species_2 is None: #add first to orig, second to new_species
            first_species = orig_species
            second_species = new_species
        else:   #add to the two new species
            first_species = new_species
            second_species = new_species_2
        #then, update the refs
        first_child.Species = first_species
        second_child.Species = second_species
        orig_species.Genes.remove(gene)
        first_species.Genes.append(first_child)
        second_species.Genes.append(second_child)
        #return the new genes for appending or whatever
        return first_child, second_child

    def _gene_birth_step(self, random_f=random):
        """Implements gene birth sweep."""
        gb = self.GeneBirth
        new_genes = []
        for gene in self.CurrGenes:
            if gb(random_f(), gene):
                new_genes.extend(self._duplicate_gene(gene, gene.Species))
            else:
                new_genes.append(gene)
        self.CurrGenes[:] = new_genes[:]

    def _gene_transfer_step(self, random_f=random):
        """Implements gene transfer sweep."""
        gt = self.GeneTransfer
        new_genes = []
        #step 2: transfer
        for gene in self.CurrGenes:
            new_species = gt(random_f(), gene)
            if new_species:
                new_genes.extend(self._duplicate_gene(gene, gene.Species, \
                    new_species))
            else:
                new_genes.append(gene)
        self.CurrGenes[:] = new_genes[:]

    def _gene_death_step(self, random_f=random):
        """Implements gene death sweep."""
        gd = self.GeneDeath
        new_genes = []
        for gene in self.CurrGenes:
            if gd(random_f(), gene):
                gene.Species.Genes.remove(gene)
            else:
                new_genes.append(gene)
        self.CurrGenes[:] = new_genes[:]

    def speciesStep(self, random_f=random):
        """Advances the state of the species by one timestep.

        Specifically:
        
        For each species in the current species, decides whether it's going to
        produce a birth or a death.
        
        If a species dies, delete it from the list of current species.

        If a species gives birth, add two child nodes to the list of current
        species, duplicate all their genes, and delete the
        original node from the list of taxa.
        Otherwise, add the timestep to the node's branchlength.
        """
        #make the species that are going to duplicate
        self._species_birth_step(random_f)
        #kill the species that are going to die
        self._species_death_step(random_f)
        self._kill_orphan_genes_step()

    def _species_death_step(self, random_f):
        """Kills species in self."""
        sd = self.SpeciesDeath
        new_list = []
        for s in self.CurrSpecies:
            if not sd(random_f(), s):
                new_list.append(s)
        self.CurrSpecies[:] = new_list[:]

    def _kill_orphan_genes_step(self):
        """Kills genes whose species has been removed."""
        new_list = []
        species_dict = dict.fromkeys(map(id, self.CurrSpecies))
        for g in self.CurrGenes:
            if id(g.Species) in species_dict:
                new_list.append(g)
        self.CurrGenes[:] = new_list[:]

    def _species_birth_step(self, random_f):
        sb = self.SpeciesBirth
        new_list = []
        for s in self.CurrSpecies:
            if sb(random_f(), s):
                new_list.extend(self._duplicate_species(s))
            else:
                new_list.append(s)
        self.CurrSpecies[:] = new_list[:]

    def _duplicate_species(self, species):
        """Duplicates a species by duplicating all its genes.
        
        WARNING: Doesn't remove from self.CurrSpecies: must do
        outside function (so can use while iterating over self.CurrSpecies).
        """
        for i in self.CurrGenes:
            assert i.Species in self.CurrSpecies
        for i in self.CurrSpecies:
            assert not i.Children
        if self.DEBUG:
            print '*** DUPLICATING SPECIES'
            print "SPECIES GENES AT START: ", len(species.Genes)
        sc = self.SpeciesClass
        #make new species
        first_child, second_child = sc(), sc()
        children = [first_child, second_child]
        #update species parent/child refs
        species.Children = children
        first_child.Parent = species
        second_child.Parent = species
        #update other child properties
        first_child.CurrSpecies = species.CurrSpecies
        first_child.Genes = []
        first_child.Length = 0
        second_child.CurrSpecies = species.CurrSpecies
        second_child.Genes = []
        second_child.Length = 0
        #update gene references
        curr_genes = self.CurrGenes
        if self.DEBUG:
            print "GENES BEFORE SWEEP: ", len(curr_genes)
            print "NUM GENES IN SPECIES: ", len(species.Genes)
        
        gene_counter = 0
        for gene in species.Genes[:]:
            assert gene.Species is species
            if self.DEBUG:
                print "handling gene ", gene_counter
            gene_counter += 1
            curr_genes.remove(gene)
            assert gene not in curr_genes
            for i in curr_genes: assert (i.Species in self.CurrSpecies) or \
                i.Species in [first_child, second_child]
            curr_genes.extend(self._duplicate_gene(gene, \
                gene.Species, first_child, second_child))
            for i in curr_genes: assert (i.Species in self.CurrSpecies) or \
                i.Species in [first_child, second_child]
        if self.DEBUG:
            print "GENES IN FIRST CHILD: ", len(first_child.Genes)
            print "GENES IN SECOND CHILD: ", len(second_child.Genes)
            print "GENES AFTER SWEEP: ", len(curr_genes)
        self.SpeciesTree.assignIds()
        if self.DEBUG:
            print "SPECIES TREE: ", self.SpeciesTree
        if self.DEBUG:
            print "SPECIES ASSIGNMENTS FOR EACH GENE"
        for i in curr_genes: 
            if self.DEBUG:
                print i.Species.Id
            assert (i.Species in self.CurrSpecies) or i.Species in [first_child, second_child]
        return children

    def updateLengths(self):
        """Adds timestep to the branch lengths of surviving genes/species."""
        ts = self.TimePerStep
        for gene in self.CurrGenes:
            gene.Length += ts
        for species in self.CurrSpecies:
            species.Length += ts

    def __call__(self, filter=True, exact_species=False, exact_genes=False, \
            random_f=random):
        """Returns a new tree using params in self.
        
        If filter is True (the default), gets rid of extinct lineages.

        If exact is True (default is False), raises exception if we didn't
        get the right number of taxa

        WARNING: Because multiple births can happen in the same timestep, you
        might get more than the number of taxa you specify. Check afterwards!
        """
        self._init_vars()
        done = False
        while not done:
            if self.DEBUG:
                print "CURR STEP:", self.CurrStep
            for i in self.CurrGenes: assert i.Species in self.CurrSpecies
            self.geneStep(random_f)
            for i in self.CurrGenes: assert i.Species in self.CurrSpecies
            self.speciesStep(random_f)
            for i in self.CurrGenes: assert i.Species in self.CurrSpecies
            self.updateLengths()
            self.CurrStep += 1
            done = not(self.timeOk() and self.genesOk() and self.speciesOk \
                and self.genomeOk)
        #check if all the constraints were met
        if not (self.CurrSpecies or self.CurrGenes):
            raise ExtinctionError, "All taxa are extinct."
        if exact_species and self.MaxSpecies and \
            (len(self.CurrSpecies) != self.MaxSpecies):
            raise TooManyTaxaError, "Got %s species, not %s." % \
                (len(self.CurrSpecies), self.MaxSpecies)
        if exact_genes and self.MaxGenes and \
            (len(self.CurrGenes) != self.MaxGenes):
            raise TooManyTaxaError, "Got %s genes, not %s." % \
                (len(self.CurrGenes), self.MaxGenes)
        #filter if required
        if filter:
            if self.DEBUG:
                print "***FILTERING..."
            self.SpeciesTree.assignIds()
            if self.DEBUG:
                print "BEFORE PRUNE: ", self.SpeciesTree
            self.SpeciesTree.filter(self.CurrSpecies, keep=True)
            if self.DEBUG:
                print "AFTER PRUNE: ", self.SpeciesTree
            for i, t in enumerate(self.GeneTrees):
                t.filter(self.CurrGenes)
        return self.SpeciesTree, self.GeneTrees