File: sequence_generators.py

package info (click to toggle)
python-cogent 1.4.1-1.2
  • links: PTS, VCS
  • area: non-free
  • in suites: squeeze
  • size: 13,260 kB
  • ctags: 20,087
  • sloc: python: 116,163; ansic: 732; makefile: 74; sh: 9
file content (1422 lines) | stat: -rw-r--r-- 56,634 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
#!/usr/bin/env python
"""sequence_generators.py: various types of random and non-random generators.

Currently provides:

SequenceGenerator: fills in degenerate sequences, either by cycling through
    all possibilities or by jumping to a particular sequence. Supports indexing,
    iteration, and slicing.

Partition: generates all the ways of dividing n objects among b bins. Useful for
    stepping through a space of compositions, or dividing a sequence.

The SequencGenerators are fairly elaborate, and allow complex modeling of RNA.
The present implementation is based on Freqs, and is relatively slow. An
array-based implementation that uses seqsim.usage objects, cogent core
alphabets, etc. is in the works, and should have essentially the same interface.
However, this implementation is fairly well-tested and was used to generate
the data for the Knight et al. 2005 NAR paper on hammerhead/isoleucine
motif folding.
"""
from operator import mul
from types import SliceType
from sys import path
from random import choice, random, shuffle, randrange
from cogent.maths.stats.util import Freqs
from cogent.struct.rna2d import ViennaStructure
from cogent.app.vienna_package import RNAfold
from numpy import logical_and, fromstring, byte

__author__ = "Rob Knight"
__copyright__ = "Copyright 2007-2009, The Cogent Project"
__credits__ = ["Rob Knight", "Daniel McDonald"]
__license__ = "GPL"
__version__ = "1.4.1"
__maintainer__ = "Rob Knight"
__email__ = "rob@spot.colorado.edu"
__status__ = "Development"

IUPAC_DNA = {'T':'T','C':'C','A':'A','G':'G',
             'R':'AG','Y':'TC','W':'TA','S':'CG','M':'CA','K':'TG',
             'B':'TCG','D':'TAG','H':'TCA','V':'CAG','N':'TCAG'}
IUPAC_RNA = {'U':'U','C':'C','A':'A','G':'G',
             'R':'AG','Y':'UC','W':'UA','S':'CG','M':'CA','K':'UG',
             'B':'UCG','D':'UAG','H':'UCA','V':'CAG','N':'UCAG'}

def permutations(n, k):
    """Returns the number of ways of choosing k items from n, in order.

    Defined as n!/k!
    """
    #Validation: k must be be between 0 and n (inclusive), and n must be >=0.
    if k > n:
        raise IndexError, "can't choose %s items from %s" % (k, n)
    elif k < 0:
        raise IndexError, "can't choose negative number of items"
    elif n < 0:
        raise IndexError, "can't choose from negative number of items"
    product = 1
    for i in xrange(n-k+1, n+1):
        product *= i
    return product

def combinations(n, k):
    """Returns the number of ways of choosing k items from n.

    Defined as n!/(k!(n-k)!)
    """
    #Validation: k must be be between 0 and n (inclusive), and n must be >=0.
    if k > n:
        raise IndexError, "can't choose %s items from %s" % (k, n)
    elif k < 0:
        raise IndexError, "can't choose negative number of items"
    elif n < 0:
        raise IndexError, "can't choose from negative number of items"
    #permutations(n, k) = permutations(n, n-k), so reduce computation by 
    #figuring out which requires calculation of fewer terms.
    if k > (n - k):
        larger = k
        smaller = n - k
    else:
        larger = n - k
        smaller = k

    product = 1
    #compute n!/(n-larger)! by multiplying terms from n to (n-larger+1)
    for i in xrange(larger+1, n+1):
        product *= i

    #divide by (smaller)! by multiplying terms from 2 to smaller
    for i in xrange(2, smaller+1): #no need to divide by 1... 
        product /= i    #ok to use integer division: should always be factor

    return product


def _slice_support(the_slice, length):
    """Takes a slice and the length of an object; returns normalized version.

    Specifically, corrects start and end for negative indices.
    """
    start = the_slice.start
    stop = the_slice.stop
    step = the_slice.step or 1
    #fill in missing values for start and end
    if start is None:
        start = 0
    if stop is None:
        stop = length
    #convert end-relative values to start-relative values
    if start < 0:
        start = length - start
    if stop < 0:
        stop = length - stop
    return (start, stop, step)

    #ensure step is not zero, or we never move in the sequence!
    if not step:
        step = 1

class SequenceGenerator(object):
    """Generates all the possibilities for a degnerate template."""
    def __init__(self, template='', alphabet=None, start=None):
        """Returns a new SequenceGenerator based on template"""
        if alphabet:
            self.Alphabet = alphabet
        else:
            self.Alphabet = IUPAC_RNA
        self.Template = template
        if start:
            self.validate(start)
            self.Start = start
        else:
            self.Start = [0] * len(template)

    def validate(self, state):
        """Check that state is allowable given the template."""
        possibilities = map(len, map(self.Alphabet.__getitem__, self.Template))
        for max_allowed, curr in zip(possibilities, state):
            if curr >= max_allowed:
                raise ValueError, "Tried to set a state to too high an index."
        
    def __str__(self):
        """Returns data about current iterator's template"""
        return "<SequenceGenerator object with template: %s, and alphabet: %s>"\
            % (self.Template, self.Alphabet)

    def __len__(self):
        """Returns the number of elements in all possible expansions."""
        return self.numPossibilities()

    def numPossibilities(self):
        """Same as __len__, except Python doesn't coerce result to an int"""
        if self.Template:
            return reduce(mul, map(len, map(self.Alphabet.__getitem__, \
                    self.Template)))
        else:
            return 0

    def _index2state(self, index):
        """Takes an index and returns the corresponding state."""
        expansions = map(self.Alphabet.__getitem__, self.Template)
        num_items = len(expansions)
        lengths = map(len, expansions)
        indices = range(num_items)
        indices.reverse()     #want to traverse in reverse order
        states = [0] * num_items    #initialize with zero
        for i in indices:
            if not index:
                break   #if index is zero, so is everything to the left of i
            if lengths[i] == 1:
                continue #skip anything that can't vary
            else:
                choices = lengths[i]
                states[i] = index % choices
                index //= choices
        return states

    def __getitem__(self, index):
        """Supports indexing. Now uses constant-time algorithm (fast)."""
        if type(index) is SliceType:
            return self._handle_slice(index)
        else:
            if index < 0:
                index = self.__len__() + index
            iterator = self.items(self._index2state(index))
            return iterator.next()

    def _handle_slice(self, index):
        """Needs separate method, since __getitem__ can't yield _and_ return.
        """
        length = self.__len__() #might be too big to fit in an int
        start, stop, step = _slice_support(index, length)
        #quick check to se if we can't return any items
        if (stop - start < 1):
            raise StopIteration
        if step < 1:
            raise NotImplementedError, \
                "Can't support negative step in irreversible sequence."""
        else:
            index = start
            iterator = self.items(self._index2state(start))
            while index < stop:
                for i in range(step - 1):
                    if i >= stop - 1:
                        raise StopIteration
                    iterator.next()
                index += step
                yield iterator.next()

    def __iter__(self):
        """Iterator interface using self.Start as the start_state."""
        return self.items(self.Start)

    def items(self, start_state=None):
        """Acts like a sequence containing all the possibilities."""
        #shortcut if the template is empty
        if not self.Template:
            return
        #figure out how many possibilities there are at each position, and
        #what the choices are
        expansions = map(self.Alphabet.__getitem__, self.Template)
        num_positions = len(expansions)
        lengths = map(len, expansions)
        #set the starting state, i.e. the array of what the current choice is
        #at each position.
        if start_state is None:
            indices = [0] * num_positions
        else:
            self.validate(start_state)
            indices = start_state[:]
        seq = [expansions[i][indices[i]] for i in range(num_positions)]
        #always return the sequence for the first possibility: there might not
        #be any more...
        yield ''.join(seq)
        while 1: 
            #find rightmost element that can be incremented
            pos = num_positions - 1
            while indices[pos] == lengths[pos] - 1:
                pos -= 1
                if pos < 0: #ran off end
                    return
            indices[pos] += 1
            seq[pos] = expansions[pos][indices[pos]]
            #reset the rest of the elements, if there are any
            pos += 1
            while pos <= num_positions - 1:
                indices[pos] = 0
                seq[pos] = expansions[pos][0]
                pos += 1
            #seq should always contain a list of the current states for each pos
            yield ''.join(seq)

class Partition(object):
    """Generator behaving like a list of the partitions of a set of n items.

    Usage: p = Partition(num_items, num_pieces, min_occupancy=0)

    Requires each bin to have at least min_occupancy pieces.
    """

    def __init__(self, num_items, num_pieces, min_occupancy=0):
        """Returns new Partition object with first partitions initialized.
        
        Usage: p = Partition(num_items, num_pieces, min_occupancy=0)
        
        Default is min_occupanct items in each bin, with all the leftovers
        in the first bin.
        """
        self.NumItems = num_items
        if num_pieces:
            self.NumPieces = num_pieces
        else:
            raise ValueError, "Cannot divide items among zero bins."
        self.MinOccupancy = min_occupancy
        self._reset()

    def __str__(self):
        """Prints string representation with pieces, items, and occupancy."""
        return "Items: %s Pieces: %s Min Per Piece: %s" % \
        (self.NumItems, self.NumPieces, self.MinOccupancy)

    def _validate(self, states):
        """Verify that states has right sum and meets occupancy restrictions.
        
        Raises ValueError if there is any problem: does not return anything.
        """
        num_pieces = self.NumPieces
        min_occupancy = self.MinOccupancy #cache for efficiency
        #check the number of pieces
        if len(states) != num_pieces:
            raise ValueError, "Tried to set state %s, but need %s pieces." % \
            (states, num_pieces)
        #check that no piece has too few items
        sum = 0
        for state in states:
            if state < min_occupancy:
                raise ValueError, \
                "Tried to set state %s, but need at least %s items per bin." %\
                (states, min_occupancy)
            sum += state
        #check that we have the right number of pieces
        if sum != self.NumItems:
            raise ValueError, \
            "Tried to set state %s, but it has %s pieces instead of %s." %\
            (states, sum, self.NumItems)
        

    def _reset(self, states=None):
        """Resets to a particular state given by sequence of states in each bin.
        
        Default: go to first partition, with MinOccupancy items in each bin and
        any leftovers in the first bin.
        """
        min_occupancy = self.MinOccupancy
        num_items = self.NumItems
        num_pieces = self.NumPieces #cache for efficiency
        if states:
            #check that we're not trying to set a bad state
            self._validate(states)
            self._bins = states
        else:
            reserved = (num_pieces - 1) * min_occupancy
            #check that we can actually divide the pieces among the bins OK
            if reserved + min_occupancy > num_items:
                raise ValueError, \
                "Can't divide %s items into %s pieces with at least %s in each."\
                % (num_items, num_pieces, min_occupancy)
            #otherwise, fill the bins    
            bins = [min_occupancy] * num_pieces
            bins[0] = num_items - reserved
            self._bins = bins
            self._reserved = reserved

    def __iter__(self):
        """Defines iterator interface, starting with self._bins."""
        return self.items()

    def _transform(self, value):
        """Transformation to be applied to return values.
        
        Default behavior is to copy, but can be overridden in derived classes.
        """
        return value[:]

    def items(self, bin_states=None):
        """Defines iterator interface, supporting for i in self."""
        #always copy the array of states, since we will be mutating it
        if bin_states:
            self._validate(bin_states)
            bins = bin_states[:]
        else:
            self._reset()
            bins = self._bins[:]
        #cache local vars for efficiency
        delta = self.MinOccupancy
        num_items = self.NumItems
        num_pieces = self.NumPieces
        transform = self._transform
        end_state = num_items - (delta * (num_pieces - 1))
        #always return the first state
        yield transform(bins)
        while 1:
            #check if we're done: when the last bin has all the items
            if bins[-1] == end_state:
                return
            #need to adjust the bins to the correct state for next time
            #find rightmost non-delta except the last
            rightmost = sum = 0
            #figure out the sum of all the items to the right of the bin we're
            #going to decrement, and also which bin we're going to decrement
            for i in xrange(len(bins)-2, -1, -1):
                curr = bins[i]
                if curr != delta:
                    rightmost = i
                    break
                else:
                    sum += curr
            #bins[-1] excluded from count above: also need to add 1 for newly
            #incremented item from the rightmost decrementable bin
            sum += bins[-1] + 1
            bins[rightmost] -= 1
            #leftover_bins counts the number of bins more than one to the left
            #of the rightmost
            leftover_bins = num_pieces - rightmost - 2
            if leftover_bins:
                bins[rightmost+2:] = [delta] * leftover_bins
                sum -= delta * leftover_bins
            bins[rightmost + 1] = sum
            yield transform(bins)

    def __len__(self):
        """Calculates the number of possible parameters with current state.

        Specifically, only takes into account the number of objects, the
        number of bins, and the minimum per bin: does _not_ take into account
        a particular start point.
        """
        #NOTE: I don't know why the following works, but it seems to be
        #empirically true when compared to the lengths of the resulting lists.
        cuts = self.NumPieces 
        items = self.NumItems - (self.MinOccupancy - 1) * cuts
        product = 1
        for i in range(items - cuts + 1, items):
            product *= i
        for i in range(2, cuts):
            product /= i
        return product

class Composition(Partition):
    """Generates evenly spaced composition intervals over an alphabet.

    Usage:c=Composition(spacing,min_occupancy=0,alphabet='ACGU')

    spacing should be a float representing the percentage of the space 
    separating successive values (e.g. 5 for 5% steps). Note that the spacing 
    may be approximated: check self.Spacing to see what the recorded value is.

    alphabet should be a list, in order, of the possible characters.

    min_occupancy should typically be 0 (can miss some symbols) or 1 (always
    require at least one of each symbol).

    Always yields an un-normalized Freqs containing counts of
    each symbol at each step.

    For a given alphabet A, the possible compositions of that alphabet can
    be represented as a simplex in len(A)-1 dimensions. Composition returns
    a representation of evenly distributed compositions in that space, with
    distances along all dimensions represented by spacing (i.e. if spacing
    is 0.05, then the next point in any dimension will be 0.05 away if it
    exists.)

    Useful for generating sequences of specified composition that can then
    be randomized.
    """
    def __init__(self,spacing,min_occupancy=0,alphabet='ACGU'):
        """Initializes new generator with specified spacing, alphabet, etc.

        Usage: c = Composition(spacing, min_occupancy=0,
                   alphabet='ACGU')

        See class documentation for details.
        """
        self.Spacing = spacing #also sets self._num_items
        self.Alphabet = alphabet #also sets self._num_pieces
        self.MinOccupancy = min_occupancy

    def _get_spacing(self):
        """Accessor for self.Spacing."""
        return self._spacing

    def _set_spacing(self, spacing):
        """Mutator for self.Spacing. Sets self.NumItems to correct value."""
        num_items = int(round(100.0/spacing))
        self._num_items = num_items
        self._spacing = 100.0/num_items

    Spacing = property(_get_spacing, _set_spacing, \
        doc="Set spacing and calculate string length.")

    def _get_num_items(self):
        """Accessor for self.NumItems."""
        return self._num_items
    def _set_num_items(self, num_items):
        """Mutator for self.NumItems: recalculates self.Spacing."""
        self._num_items = num_items
        self._spacing = 100.0/num_items

    NumItems = property(_get_num_items, _set_num_items, \
        doc="Set NumItems and calculate Spacing.")
    
    def _get_alphabet(self):
        """Accessor for self.Alphabet."""
        return self._alphabet
    def _set_alphabet(self, alphabet):
        """Mutator for self.Alphabet."""
        self._alphabet = alphabet

    Alphabet = property(_get_alphabet, _set_alphabet, \
        doc="Set alphabet and calculate number of pieces.")

    def _get_num_pieces(self):
        """Accessor for self.NumPieces"""
        return len(self.Alphabet)

    NumPieces = property(_get_num_pieces, doc="Get number of pieces.")

    def _transform(self, value):
        """Override superclass transform to yield Freqs.
        """
        return Freqs(dict(zip(self.Alphabet, value)))
       
    def __iter__(self):
        """Defines iterator interface, starting with self._bins."""
        return self.items()

class MageFrequencies(object):
    """Takes a Freqs and optionally a label.

    Writes out a Mage-format string.

    This presentation class is standalone to avoid cluttering 
    Freqs.
    """
    def __init__(self, freqs, label=''):
        """Returns a new MageFrequencies object.

        This is basically a labeled Freqs that can write itself
        out as a Mage-format string.
        """
        self.Freqs = freqs#don't mutate original
        self.Label = label
    
    def __str__(self):
        """Returns the frequency string, suitable for MAGE."""
        pieces = []
        freqs = self.Freqs
        known_bases = Freqs({
            'A':freqs.get('A',0),
            'C':freqs.get('C',0),
            'U':freqs.get('U',0) + freqs.get('T',0),
            'G':freqs.get('G',0),
            })
        #frequencies should sum to 1 for MAGE display.
        known_bases.normalize()
        #Only append label field if there is one.
        label = self.Label or ''
        if label:
            pieces.append('{%s}' % self.Label)
        for item in 'ACG':
            pieces.append(str(known_bases[item]))
        return ' '.join(pieces)

class SequenceHandle(list):
    """Holds mutable sequence that can join itself together as string.
    
    Sequence cannot vary in length.
    """
    def __init__(self, data='', alphabet=None):
        """Initializes new list over an alphabet. Rejects invalid entries."""
        if alphabet:
            for d in data:
                if d not in alphabet:
                    raise ValueError, "Item %s not in alphabet %s." \
                    % (d, alphabet)
        super(SequenceHandle, self).__init__(data)
        self.Alphabet = alphabet

    def __setitem__(self, index, item):
        """Checks that the item is in the alphabet."""
        alphabet = self.Alphabet
        if alphabet:
            try:
                absent = item not in alphabet
            except TypeError:
                raise ValueError, "Item %s not in alphabet %s." \
                % (item, alphabet)
            else:
                if absent:
                    raise ValueError, "Item %s not in alphabet %s." \
                    % (item, alphabet)
        super(SequenceHandle, self).__setitem__(index, item)

    def __setslice__(self, start, stop, values):
        """Checks that items are in alphabet, and that slice is same length."""
        orig_length = len(self)
        alphabet = self.Alphabet
        if alphabet:
            for v in values:
                try:
                    absent = v not in alphabet
                except TypeError:
                    raise ValueError, "Item %s not in alphabet %s." \
                    % (v, alphabet)
                else:
                    if absent:
                        raise ValueError, "Item %s not in alphabet %s." \
                        % (v, alphabet)
        super(SequenceHandle, self).__setslice__(start, stop, values)
        if len(self) != orig_length:
            raise ValueError, "Cannot change length of SequenceHandle."

    def __str__(self):
        """Returns self as a string, symbols joined."""
        try:
            return ''.join(self)
        except: #use built-in conversion methods for lists
            return super(SequenceHandle, self).__str__()

    def _naughty_method(self, *args, **kwargs):
        """Prevent other methods that change the length or set items."""
        raise NotImplementedError, \
            "May not change length of SequenceHandle."
    #note how _many_ methods are naughty... 
    __delitem__ = __delslice__ = __iadd__ = __imul__ = append \
    = extend = insert = pop = remove = _naughty_method
 
class BaseFrequency(Freqs):
    RNA = ['U', 'C', 'A', 'G']
    DNA = ['T', 'C', 'A', 'G']

    """Holds information about base frequencies."""

    def __init__(self, freqs, RNA=True):
        """Returns new BaseFrequency object, ensuring a count for each base."""
        if RNA:
            alphabet = self.RNA
        else:
            alphabet = self.DNA
        super(BaseFrequency, self).__init__(freqs, alphabet)
        for k in alphabet:
            if k not in self:
                self[k] = 0.0

class PairFrequency(Freqs):
    """Makes a frequency distribution of pairs from freqs of single items."""

    def __init__(self, freqs, pairs=None):
        """Makes pair frequency distribution.

        Usage: p = PairFrequency(freqs, pairs)

        freqs is the single-item frequencies
        pairs is the list of valid pairs from which samples will be drawn.
        If pairs is None (the default), constructs all possible pairs.
        """
        symbol_freqs = BaseFrequency(freqs)
        if pairs is None:
            symbols = symbol_freqs.keys()
            pairs = [(i, j) for i in symbols for j in symbols]
        pair_freqs = {}
        for i, j in pairs:
            try:
                pair_freqs[(i,j)] = symbol_freqs[i]*symbol_freqs[j]
            except KeyError, e:
                print symbol_freqs
                print i, j
                raise e
        super(PairFrequency, self).__init__(pair_freqs, pairs)
        self.normalize()

class BasePairFrequency(PairFrequency):
    """Holds information about base pair frequencies."""
    WatsonCrick = [('A','U'), ('U','A'),('G','C'),('C','G')]
    Wobble = WatsonCrick + [('G','U'), ('U','G')]

    def __init__(self, freqs, GU=True):
        if GU:
            pairs = self.Wobble
        else:
            pairs = self.WatsonCrick
        super(BasePairFrequency, self).__init__(freqs, pairs)   

class RegionModel(object):
    """Holds probability model for constructing random or randomized sequences.

    Supports the following interface:

        Current:     Reference to current sequence, or tuple of references.
        Template:    Degenerate sequence specifying the class of sequences to
                     produce. Immutable.
        Length:      Length of the current sequence. Read-only.
        Composition: Composition used to generate sequences (e.g. pairs).
        refresh():   Generate the next, random sequence.
        monomers(f): Update internal frequencies using symbol frequencies in f.
        
    Base class RegionModel behavior is to model a constant region.
    """
    def __init__(self, template='', composition=None):
        """Return a new RegionModel object. See class for documentation."""
        self.Composition = composition
        self.Template = template    #will set self.Current

    def _get_template(self):
        """Accessor method for self.Template"""
        return self._template
    
    def _set_template(self, data):
        """Mutator method for self.Template"""
        self._template = data
        self.Current = SequenceHandle(data)
        self.refresh()

    Template = property(_get_template, _set_template)

    def _get_composition(self):
        """Accessor method for self.Composition"""
        return self._composition

    def _set_composition(self, composition):
        """Mutator method for self.Composition"""
        self._composition = composition
        self.refresh()
        
    Composition = property(_get_composition, _set_composition)

    def __len__(self):
        """Returns length of the current string."""
        return len(self.Current)

    def refresh(self):
        """Replaces the current sequence with a new string fitting the model.

        Does nothing unless overridden in derived classes.
        """
        pass

    def monomers(self, composition, **kwargs):
        """Replaces the current composition with new Freqs."""
        self.Composition = composition  #no effect unless overridden

class ConstantRegion(RegionModel):
    """Holds a constant string: this is default behavior."""
    pass

class UnpairedRegion(RegionModel):
    """Holds an unpaired region: this gets filled in from self.Composition."""
    def refresh(self):
        """Fills in a sequence drawn randomly from composition."""
        if hasattr(self, "Current") and self.Current and self.Composition:
            self.Current[:] = self.Composition.randomSequence(len(self))

class ShuffledRegion(RegionModel):
    """Holds a non-degenerate template that is randomized by shuffling."""
    def refresh(self):
        """Randomizes the template by permuting the elements."""
        if hasattr(self, "Current") and self.Current:
            shuffle(self.Current)

class PairedRegion(RegionModel):
    """Holds complementary upstream and downstream strands."""
    def refresh(self):
        """Fills in tuple of paired sequences drawn from self.Composition."""
        if hasattr(self, "Current") and self.Current and self.Composition:
            length = len(self)
            upstream = self.Current[0]
            downstream = self.Current[1]
            pairs = self.Composition.randomSequence(length)
            for i in xrange(length):
                upstream[i] = pairs[i][0]
                downstream[i] = pairs[i][1]
            #downstream has the complements, but need to reverse it as well
            downstream.reverse()

    def __len__(self):
        """Returns length of (half of) the current helix, not the tuple..."""
        return len(self.Current[0])

    def _set_template(self, data):
        """Mutator method for self.Template"""
        data = list(data)
        self._template = data
        self.Current = (SequenceHandle(data), SequenceHandle(data))
        self.refresh()

    #Override base class _set_template in the property
    Template = property(RegionModel._get_template, _set_template)
    
    def monomers(self, composition, **kwargs):
        """Calculates pair distribution from monomer frequencies."""
        GU = kwargs.get('GU', True)
        self.Composition = BasePairFrequency(composition,GU)

class DegenRegion(RegionModel):
    """Handles a string of degenexerate bases.
    
    WARNING: Not tested!
    """
    def refresh(self):
        """Fills in degen bases randomly according to possible symbols"""
        if hasattr(self, "Current") and self.Current and self.Composition:
            result = []
            non_degen = dict.fromkeys('UCAG')
            freqs = self.Composition
            for b in self.Template:
                if b in non_degen:
                    result.append(b)
                else:
                    allowed_bases = IUPAC_RNA[b]
                    composition = Freqs(dict([(i,freqs[i]) for i in allowed_bases]))
                    composition.normalize()
                    result.append(composition.choice(random()))
            self.Current[:] = ''.join(result)

###WARNING: MATCHINGREGION HAS NOT YET BEEN TESTED####
class MatchingRegion(RegionModel):
    """Fills in the complement to specified constant region."""
    WatsonCrick = {'A':'U', 'U':'A', 'C':'G', 'G':'C'}
    Wobble = {'A':'U', 'U':'AG', 'C':'G', 'G':'UC'}

    def __init__(self):
        raise NotImplementedError, "NOT YET TESTED"

    def _init_current(self):
        """Initializes Current and some private variables."""
        wc = self.WatsonCrick
        template = self.Template
        self.Complement = [wc[base] for base in template]
        self.Current = SequenceHandle(self.Complement)
        self._freqs = {}
        
    def refresh(self):
        """Returns new sequence that could pair with template."""
        if self.GU:
            freqs = self._freqs
            bases = [freqs[base].randomSequence(1)[0] for base in self.Template]
            self.Current[:] = bases
        else:
            self.Current[:] = self.Complement

    def monomers(self, freqs, **kwargs):
        """Calculates Freqs of possibilities for each base."""
        if kwargs.get('GU', False):
            pairs = self.Wobble.items()
            self.GU = True
            for base, complements in pairs:
                freqs = self.Composition.copy()
                freqs.subset(complements)
                freqs.normalize()
                self._freqs[base] = freqs
        else:
            self.GU = False

class SequenceModel(object):
    """Stores state associated with generating a randomized sequence."""
    def __init__(self, order, composition=None, GU=True,    \
        constants=[], unpaireds=[], helices=[], matches=[], degenerates=[]):
        """Returns a new SequenceModel.

        constants, unpaireds, and helices should all be lists of RegionModels.
        order should be a string of the following format:
            [label1][index1] [label2][index2] ...
            where label is C for constant, U for unpaired, or H for helix,
            or D for degen,
            and index is the index of the region within the appropriate list.

            Use hyphens to indicate cuts.

            For example:
                "C0 U3 H1 U5 - H2 C1 H2 H1 U0"
                ...means constants[0] followed by unpaireds[3], followed by the
                first part of helices[1], followed by unpaireds[5], followed
                by the first part of helices[2], followed by constants[1],
                followed by the second part of helices[2], followed by the
                second part of helices[1], followed by unpaireds[0].
                There is a cut in the sequence between U5 and H2.

        Although this is a very general mechanism (each piece can potentially
        have its own composition, etc.), typically the functionality will be
        accessed programatically through other classes.
        """
        self.Helices = helices
        self.Unpaireds = unpaireds
        self.Constants = constants
        self.Degenerates = degenerates
        self.Matches = matches
        self.GU = GU
        #Don't _require_ a composition to be passed in, but if it isn't passed
        #in, then all the pieces must be initialized with their own compositions
        #beforehand.
        self.Composition = composition  
        self.Order = order

    def __len__(self):
        """Figures out the total length of all the components."""
        length = 0
        for i in self.Unpaireds + self.Constants + self.Matches + self.Degenerates:
            length += len(i)
        for h in self.Helices:
            length += 2 * len(h)
        return length
    
    def refresh(self):
        """Delegates each region to refresh itself."""
        for i in self.Helices + self.Unpaireds + self.Matches + self.Degenerates:
            i.refresh()

    def _get_order(self):
        """Accessor for self.Order."""
        return self._order

    def _set_order(self, order):
        """Figure out the order to put pieces in, using string format."""
        result = []
        segments = order.split('-')
        helix_counts = [0] * len(self.Helices)
        for s in segments:
            pieces = []
            components = s.split()
            for c in components:
                label = c[0]
                index = int(c[1:])
                if label == 'C':    #constant
                    pieces.append(self.Constants[index].Current)
                elif label == 'U':  #unpaired random region
                    pieces.append(self.Unpaireds[index].Current)
                elif label == 'D':  #degenerate region
                    pieces.append(self.Degenerates[index].Current)
                elif label == 'H':  #helix
                    pieces.append(self.Helices[index].Current[\
                    helix_counts[index]])
                    helix_counts[index] += 1
                    #will give IndexError if the helix is added too many times
                else:
                    raise ValueError, \
                    "SequenceModel got unknown label: %s" % label
            result.append(pieces)
        self._order = result
        self.refresh()

    Order = property(_get_order, _set_order, \
        doc="Stores order for accessing the pieces of the template.")

    def _get_composition(self):
        """Accessor for Composition."""
        return self._composition

    def _set_composition(self, composition):
        """Sets the composition of each of the components to a global value."""
        if composition:
            for i in self.Helices + self.Unpaireds + self.Matches + self.Degenerates:
                i.monomers(composition, GU=self.GU)
        self._composition = composition

    Composition = property(_get_composition, _set_composition)

    def _get_GU(self):
        """Accessor for GU."""
        return self._GU

    def _set_GU(self, GU):
        """Mutator for GU. Recalculates composition."""
        self._GU = GU
        if hasattr(self, 'Composition') and self.Composition:
            self.Composition = self.Composition #recalculate with GU

    GU = property(_get_GU,_set_GU,doc="Controls whether GU pairs are allowed.")

    def __getitem__(self, index):
        """Returns the index'th segment of the sequence in its current state."""
        return ''.join([str(i) for i in self.Order[index]])

    def __str__(self):
        return '-'.join(self)

class Rule(object):
    """Holds information about pairing constraints on motifs."""
    def __init__(self, upstream_seq, upstream_pos, downstream_seq, \
        downstream_pos, length):
        """Initialize new Rule object."""
        self.UpstreamSequence = upstream_seq
        self.UpstreamPosition = upstream_pos
        self.DownstreamSequence = downstream_seq
        self.DownstreamPosition = downstream_pos
        self.Length = length
        self.validate()

    def validate(self):
        """Sanity checks on rule object."""
        if self.Length <= 0:
            raise ValueError, "Helix length must be at least 1."
        if self.Length > self.DownstreamPosition + 1:
            raise ValueError, \
            "Helix length cannot be more than 1 greater than downstream start."
        if min(self.UpstreamSequence, self.UpstreamPosition, \
            self.DownstreamSequence, self.DownstreamPosition) < 0:
            raise ValueError, \
            "All sequences and positions must be >= 0."
        if self.UpstreamSequence == self.DownstreamSequence:
            if self.UpstreamPosition >= self.DownstreamPosition:
                raise ValueError, \
                "Upstream position must have lower index than downstream."
            if self.DownstreamPosition-self.UpstreamPosition+1 < 2*self.Length:
                raise ValueError, "Helices can't overlap."
        if self.UpstreamSequence > self.DownstreamSequence:
            raise ValueError, "Upstream sequence must have the smaller index."

    def isCompatible(self, other):
        """Checks that the helices in self and other don't overlap.

        Has to try all possible combinations of upstream and downstream
        sequences, since any could conflict.
        """
        if self.UpstreamSequence == other.UpstreamSequence:
            diff = abs(self.UpstreamPosition - other.UpstreamPosition)
            if self.UpstreamPosition <= other.UpstreamPosition:
                if diff < self.Length:
                    return False
            elif diff < other.Length:
                return False
                
        if self.DownstreamSequence == other.DownstreamSequence:
            diff = abs(self.DownstreamPosition - other.DownstreamPosition)
            if self.DownstreamPosition >= other.DownstreamPosition:
                if diff < self.Length:
                    return False
            elif diff < other.Length:
                return False

        if self.UpstreamSequence == other.DownstreamSequence:
            diff = abs(self.UpstreamPosition - other.DownstreamPosition)
            #only need to check if position in self <= position in other
            if self.UpstreamPosition <= other.DownstreamPosition:
                if diff < (self.Length + other.Length - 1):
                    return False

        if self.DownstreamSequence == other.UpstreamSequence:
            diff = abs(self.DownstreamPosition - other.UpstreamPosition)
            #only need to check if position in self >= position in other
            if self.DownstreamPosition >= other.UpstreamPosition:
                if diff < (self.Length + other.Length - 1):
                    return False
        #if none of the checks failed, return True
        return True

    def fitsInSequence(self, upstream):
        """Checks whether upstream sequence is too short to hold helix.
        
        Note: downstream sequence length doesn't need to be checked because
        the index that can't be overlapped is always 0.
        """
        if self.UpstreamPosition + self.Length > len(upstream):
            return False
        else:
            return True
        
    def __str__(self):
        """Human-readable rule string."""
        return "Up Seq: %s Up Pos: %s Down Seq: %s Down Pos: %s Length: %s" % \
            (self.UpstreamSequence, self.UpstreamPosition, \
             self.DownstreamSequence, self.DownstreamPosition, self.Length)

class Module(object):
    """Holds information about a module's required sequence and structure."""
    def __init__(self, sequence, structure):
        """Returns a new Module object with specified sequence and structure."""
        self.Sequence = sequence
        self.Structure = structure
        len(self)   #will raise error if lengths out of sync

    def __len__(self):
        """Returns length of sequence and structure."""
        seq = self.Sequence
        struct = self.Structure
        seq_length = len(seq)
        if seq_length != len(struct):
            raise ValueError, \
            "Lengths of sequence '%s' and structure '%s' differ." % \
            (seq, struct)
        else:
            return seq_length

    def __str__(self):
        """Returns string containing sequence and structure."""
        return "Sequence:  %s\nStructure: %s" % (self.Sequence, self.Structure)

    def matches(self, other, index=None, alphabet=IUPAC_RNA):
        """Tests whether sequence/structure in self match other at index.

        other must be an object that has Sequence and Structure properties.
        If index is None, will search for matches anywhere in other.
        
        ###THIS METHOD NEEDS ATTENTION: move responsibility for finding matches
        to the sequence objects themselves?
        """
        length = len(self)
        if not length:  #zero-length pattern matches everywhere by definition
            return True 
        if index is not None:   #index might be 0...
            seq_match = True
            this_seq = self.Sequence
            other_seq = other.Sequence
            for i in range(length):
                curr = False
                try:
                    curr = curr or (other_seq[i+index] in alphabet[this_seq[i]])
                except:
                    pass
                if not curr:
                    try:
                        curr = curr or (this_seq[i] in \
                            alphabet[other_seq[i+index]])
                    except:
                        pass
                if not curr:
                    seq_match = False
                    break
            struct_match = self.structureMatches(other.Structure, index)
            return seq_match and struct_match[0]
        else:
            other_length = len(other)
            seq = self.Sequence
            struct = self.Structure
            other_struct = other.Structure
            other_seq = other.Sequence
            curr = 0    #current index
            while curr <= other_length - length:   #don't run off end
                try:
                    index = other_seq.index(seq, curr)
                except ValueError:
                    return False    #no more matches to try
                if struct == other_struct[index:index+length]:
                    return True     #found struct and seq matches at same place
                if curr == index:
                    curr += 1       #always make sure curr is incremented
                else:
                    curr = index
            return False    #must have been a seq match but no struct match
                            #at last window if we got here after the loop

    def structureMatches(self, structure, index):
        """Tests whether structure in self matches other at index.
        
        structure must have PairList property, e.g. ViennaStructure.
        """
        length = len(self)
        if not length:  #zero-length pattern matches everywhere by definition
            return (True, )
        else:
            ss = fromstring(self.Structure, byte)
            structure_mask = ss != ord('x')
            diffs = ss != fromstring(structure[index:index+length], byte)
            result = not logical_and(diffs, structure_mask).any()
            return result, ss, structure_mask, diffs
            
class Motif(object):
    """Holds sequences and structures for a motif."""
    def __init__(self, modules, rules):
        """Initializes motif with sequences, structures, and rules"""
        self.Modules = modules
        self.Rules = rules                      
        self.validate()
        
    def validate(self):
        """Checks that sequences and structures are equal length, and rules ok.

        Specifically, there must be the same number of sequences as structures;
        the length of each sequence must be the length of each structure; and
        the rules may not refer to any index outside the known sequences and
        structures.
        """
        self._check_helix_lengths()
        self._check_rule_overlaps()
    
    def _check_helix_lengths(self):
        """Check upstream sequence of each rule to make sure the helix can fit."""
        for r in self.Rules:
            if not r.fitsInSequence(self.Modules[r.UpstreamSequence].Sequence):
               raise ValueError, "Rule '%s' can't fit in sequence '%s'." \
               % (r, self.Modules[r.UpstreamSequence].Sequence)
                
    def _check_rule_overlaps(self):
        """Check every pair of rules for overlaps in covered regions."""
        rules = self.Rules  #cache reference for efficiency
        for first in range(len(rules)):
            first_rule = rules[first]
            for second in range(first):
                second_rule = rules[second]
                if not first_rule.isCompatible(second_rule):
                    raise ValueError, "Rules '%s' and '%s' incompatible." \
                    % (first, second)

    def _check_rule_match(self, rule, pairlist, locations):
        """Check whether rule matches pairlist given module locations.
        
        pairlist should be a list where, for each position in a longer sequence,
        parlist[i] should be the index of the partner of i, or None if i is
        not paired.

        locations should be a list of the locations of each module, in the order
        that the rule expects to find them.
        """
        start_up = locations[rule.UpstreamSequence]+rule.UpstreamPosition
        start_down = locations[rule.DownstreamSequence]+rule.DownstreamPosition
        for i in range(rule.Length):
            if pairlist[start_up + i] != start_down - i:
                return False
        return True     #if nothing failed, everything must be OK

    def _get_rule_match_pairs(self, rule, pairlist, locations):
        """Get the pairs that the rule will check."""
        start_up = locations[rule.UpstreamSequence]+rule.UpstreamPosition
        start_down = locations[rule.DownstreamSequence]+rule.DownstreamPosition
        return [(start_up+i,start_down-i) for i in range(rule.Length)]

            
    def matches(self, sequence, structure, positions):
        """Checks that sequence and structure matches motifs/rules.

        sequence needs to support the string interface (specifically, s.index)
        if it is necessary to search for matches anywhere; otherwise, arbitrary
        sequences should work.

        structure must have a PairList property (like ViennaStructure),
        which is a list the same length as the sequence where the value of
        each position is the index of its partner, or None if it is unpaired.
        As with sequence, must support string interface to find arbitrary
        matches; arbitrary sequences are ok otherwise.

        positions must be a list the same length as self.Modules, containing the
        index at which each successive module should be searched for.

        ###TO BE IMPLEMENTED: IF POSITIONS IS NONE, SEARCH FOR THE MODULES
        ANYWHERE IN THE SEQUENCE.###
        """
        full_length = Module(sequence, structure)   #more convenient as object
        modules = self.Modules
        if len(positions) != len(modules):
            raise ValueError, "len(positions) must match number of modules."
        for position, module in zip(positions, modules):
            if not module.matches(full_length, position):
                return False
        #can only get here if all the modules matched: need to check rules
        pairlist = structure.toPartners()
        for rule in self.Rules:
            if not self._check_rule_match(rule, pairlist, positions):
                return False
        #if we got here, all the modules matched and all the rules were OK
        return True
 
    def structureMatches(self, structure, positions, offsets=None,debug=False):
        """Checks that structure only matches motifs/rules.

        structure must have a PairList property (like ViennaStructure),
        which is a list the same length as the sequence where the value of
        each position is the index of its partner, or None if it is unpaired.
        As with sequence, must support string interface to find arbitrary
        matches; arbitrary sequences are ok otherwise.

        positions must be a list the same length as self.Modules, containing the
        index at which each successive module should be searched for.

        ###TO BE IMPLEMENTED: IF POSITIONS IS NONE, SEARCH FOR THE MODULES
        ANYWHERE IN THE SEQUENCE.###
        """
        modules = self.Modules
        if len(positions) != len(modules):
            raise ValueError, "len(positions) must match number of modules."
        if offsets:
            positions = [p+o for p, o in zip(positions, offsets)]
        result = True
        for position, module in zip(positions, modules):
            matched, ss, mask, diffs = \
                module.structureMatches(structure, position) 
            if debug:
                print 'STRUC:', structure[position:position+len(ss)]
                print 'SS   :', ss.tostring()
                print 'MASK :', ''.join(map(str, map(int, mask)))
                print 'DIFFS:', ''.join(map(str, map(int,diffs)))
                print 'WHERE:'
                all = ['.'] * len(structure)
                all[position:position+len(ss)] = ['x']*len(ss)
                print ''.join(all)
            if not matched: 
                if debug:
                    result = False
                else:
                    return False
        if not result:
            return False
        #can only get here if all the modules matched: need to check rules
        pairlist = structure.toPartners()
        for rule in self.Rules:
            if debug:
                pairs = self._get_rule_match_pairs(rule, pairlist, positions)
                for up, down in pairs:
                    all = ['.'] * len(structure)
                    all[up] = '('
                    all[down] = ')'
                    print ''.join(all)
                    if not pairlist[up] == down:
                        print structure
                        raise Exception, "Failed to find partner in pairlist"
            if not self._check_rule_match(rule, pairlist, positions):
                return False
        #if we got here, all the modules matched and all the rules were OK
        return True
        

class SequenceEmbedder(object):
    """Generates and analyzes set of modules embedded inside longer sequence."""
    def __init__(self, length, num_to_do, motif, model, composition, GU=True,\
                 with_replacement=False, positions=None, primer_5='',
                 primer_3='', match_offsets=None, debug=False, report_seqs=False
                 ):
        """Initializes with a specified length sequence model, composition.
        
        Note that sampling with replacement does NOT give all the outcomes
        equal frequencies, e.g. with two choices (0,1) will happen half the
        time because there are 2 ways to get it, but only one way to get
        (0,0) or (1,1).
        """
        self.Model = model
        self.Motif = motif
        self.NumToDo = long(num_to_do)
        self.Length = long(length)
        self.WithReplacement = with_replacement #allows adjacent modules
        self.GU = GU
        self.RandomRegion = UnpairedRegion('N'*(length - len(self.Model)), \
            composition)
        self.Composition = composition
        self._fixed_positions = positions
        self.Positions = positions
        self.Primer3 = primer_3
        self.Primer5 = primer_5
        self.MatchOffsets = match_offsets
        self.Debug = debug
        self.ReportSeqs = report_seqs

    def _get_composition(self):
        """Accessor for self.Composition."""
        return self._composition

    def _set_composition(self, composition):
        """Mutator for self.Composition."""
        self._composition = composition
        if composition:
            self.Model.GU = self.GU
            self.Model.Composition = composition
            self.RandomRegion.Composition = composition

    Composition = property(_get_composition, _set_composition)

    def _choose_locations(self):
        """Picks out places for the modules."""
        random_positions = self.Length - len(self.Model)
        num_modules = len(self.Motif.Modules)
        locations = []
        with_replacement = self.WithReplacement
        if (not with_replacement) and (random_positions < num_modules):
            raise ValueError, "Not enough positions to place modules."
        while len(locations) < num_modules:
            if with_replacement:
                curr = randrange(random_positions + 1)
                locations.append(curr)
            else:
                curr = randrange(random_positions)
                if curr not in locations:
                    locations.append(curr)
        locations.sort()
        return locations

    def __str__(self):
        """Makes a new sequence with inserts at correct positions.
        
        Note: no longer mutates self.Positions.
        """
        pieces = [str(self.Primer5)]
        random = str(self.RandomRegion.Current)
        modules = list(self.Model)
        added_positions = 0
        last_position = 0
        positions = self.Positions[:]
        for i in range(len(positions)):
            curr_module = modules[i]
            curr_position = positions[i]
            pieces.append(random[last_position:curr_position])
            pieces.append(curr_module)
            last_position = curr_position
            positions[i] += added_positions
            added_positions += len(curr_module)
        pieces.append(random[last_position:])   #add anything left over
        pieces.append(str(self.Primer3))
        return ''.join(pieces)
            
    def refresh(self):
        """Generates a new version of each module, incl. the random region."""
        self.RandomRegion.refresh()
        self.Model.GU = self.GU
        self.Model.refresh()

    def countMatches(self, verbose=False, temp=25):
        """Generates NumToDo sequences, folds them, and returns match count."""
        positions = []
        seqs = []
        structs = []
        orig_positions = self._fixed_positions
        self.Positions = orig_positions
        for i in xrange(self.NumToDo):
            self.refresh()
            if not orig_positions:
                self.Positions = self._choose_locations()
            curr_seq = str(self)
            #adjust positions to account for inserted modules
            curr_positions = self.Positions[:]
            insert_length = len(self.Primer5)
            module_lengths = map(len, list(self.Model))
            for i in range(len(curr_positions)):
                curr_positions[i] += insert_length
                insert_length += module_lengths[i]
            positions.append(curr_positions)
            seqs.append(curr_seq)
        folder = RNAfold(params={'-T':temp})
        struct_file = folder(seqs)['StdOut']
        odd = False
        for line in struct_file:
            if odd:
                structs.append(ViennaStructure(line.split()[0]))
            odd = not odd
        good_count = 0
        if self.Debug:
            print "DEBUGGING"   #debug code: prints seqs, structs, matches
        for seq, struct, position in zip(seqs, structs, positions):
            matched = self.Motif.structureMatches(struct, position, \
                self.MatchOffsets,debug=self.Debug)
            if matched:
                good_count += 1
            if self.Debug or (matched and self.ReportSeqs):
                module_lengths = map(len, list(self.Model))
                if self.Debug:
                    print "Module lengths:", module_lengths
                    print "Positions:", position
                print seq
                print struct
                temp = [' '] * len(seq)
                for l, p in zip(module_lengths, position):
                    temp[p:p+l] = ['*']*l
                print ''.join(temp)
                if self.Debug:
                    print "Offsets:", self.MatchOffsets
                print matched
        return good_count